

Next-Generation Sequencing and Methylation Profiling.

Alignment to a reference of BS-treated sequences

Alberto Policriti

(joint work with C. Del Fabbro, E. De Paoli, N. Prezza, and F. Vezzi)

Napoli — September 26, 2012

Alignment of BS-treated sequences

Alignment of BS-treated sequences

Dot-plot

Dot-plot

Alignement

Alignment of BS-treated sequences

A familiar alignment "program"

- extends to strings a valuation given on the alphabet by a cost matrix
- gaps are allowed but it is not clear how much to charge for them

Alignment of BS-treated sequences

Dot-plot

A familiar alignment "program"

- extends to strings a valuation given on the alphabet by a cost matrix
- gaps are allowed but it is not clear how much to charge for them

Aligning

Computing a *sliding* dot-plot

Introduction

Alignement

Alignment of BS-treated sequences

Distances and Scores

A "negative" or "positive" point of view Distance ↓ Score ↑

Alignment of BS-treated sequences

Distances and Scores

A "negative" or "positive" point of view		
Distance \Downarrow	Score ↑	

 α and β strings

Definition (Levensthein (edit) distance)

 $d_L(\alpha,\beta)$: min number of Insertion Deletion Substitution

to convert a α into β

Alignment of BS-treated sequences

Distances and Scores

A "negative" or "positive" point of view		
Distance \Downarrow	Score ↑	

 α and β strings

Definition (Levensthein (edit) distance)

 $d_L(\alpha,\beta)$: min number of Insertion Deletion Substitution

to convert a α into β

What are we searching for?

 $Alignment \equiv Program$

Alignment of BS-treated sequences

Let us simplify our lives

Definition (Hamming distance)

 $d_H(\alpha, \beta)$: min number of Substitution

to convert a α into β

Alignment of BS-treated sequences

Let us simplify our lives

Definition (Hamming distance)

 $d_H(\alpha, \beta)$: min number of Substitution

to convert a α into β

Complexity and gain

Hamming $\Rightarrow |\alpha|$ (the length of α) must be equal to β Levensthein $\Rightarrow |\alpha|$ and $|\beta|$ may be different

Matrix-based alignment and *fast* alignments

Matrix-based alignments (Levensthein)

A weighted dot-plot computation of the *Pattern* against the *Reference* along the entire R

Matrix-based alignment and *fast* alignments

Matrix-based alignments (Levensthein)

A weighted dot-plot computation of the *Pattern* against the *Reference* along the entire R

Cost

 $3G \times 100$ cells to scan (for Human)!

Introduction

Alignement ○●○○○ Alignment of BS-treated sequences

Matrix-based alignment and fast alignments

Fast alignments (Hamming)

A scan of R with P stored in memory

Introduction

Alignement ○●○○○ Alignment of BS-treated sequences

Matrix-based alignment and *fast* alignments

Fast alignments (Hamming)

A scan of R with P stored in memory

time necessary to load the reference

Alignment of BS-treated sequences

Data structures

Observation

We can structure up R while loading it

Advantages: example

Ordering a set of 1G ($\approx 2^{30})$ numbers allows to search *any* element in no more than 30 steps

Alignment of BS-treated sequences

Data structures

Observation

We can structure up R while loading it

Advantages: example

Ordering a set of 1G ($\approx 2^{30})$ numbers allows to search any element in no more than 30 steps

Question

Can we order a text (like R)?

Introduction

Alignement

Alignment of BS-treated sequences

Two important techniques

Suffixes

R-suffixes can be ordered lexicographically

Hashing

R-blocks (*k*-mers) can be used as numbers to *index* an array

Two important techniques

Suffixes

1	AGGTTGCCAGTGT	1	AGGTTGCCAGTGT
2	GGTTGCCAGTGT	9	AGTGT
3	GTTGCCAGTGT	8	CAGTGT
4	TTGCCAGTGT	7	CCAGTGT
5	TGCCAGTGT	6	GCCAGTGT
6	GCCAGTGT	2	GGTTGCCAGTGT
7	CCAGTGT	12	GT
8	CAGTGT	10	GTGT
9	AGTGT	3	GTTGCCAGTGT
10	GTGT	13	Т
11	TGT	5	TGCCAGTGT
12	GT	11	TGT
13	Т	4	TTGCCAGTGT

Alignment of BS-treated sequences

Two important techniques

Alignment of BS-treated sequences

Compression

Ordered *R*-suffixes can be *compressed*: Burrows-Wheeler

AGGTTGCCAGTGT AGTGT CAGTGT CCAGTGT GCCAGTGT GGTTGCCAGTGT GT GTGT **GTTGCCAGTGT** т TGCCAGTGT TGT TTGCCAGTGT

Alignment of BS-treated sequences

Compression

Ordered *R*-suffixes can be *compressed*: Burrows-Wheeler

\$ AGGTTGCCAGTGT\$ AGTGT\$ CAGTGT\$ CCAGTGT\$ GCCAGTGT\$ **GGTTGCCAGTGT\$** GT\$ GTGT\$ GTTGCCAGTGT\$ **T**\$ TGCCAGTGT\$ TGT\$ TTGCCAGTGT\$

Alignment of BS-treated sequences

Compression

Ordered *R*-suffixes can be *compressed*: Burrows-Wheeler

\$AGGTTGCCAGTGT AGGTTGCCAGTGT\$ AGTGT\$AGGTTGCC CAGTGT\$AGGTTGC CCAGTGT\$AGGTTG GCCAGTGT\$AGGTT GGTTGCCAGTGT\$A GT\$AGGTTGCCAGT GTGT\$AGGTTGCCA GTTGCCAGTGT\$AG T\$AGGTTGCCAGTG TGCCAGTGT\$AGGT TGT\$AGGTTGCCAG TTGCCAGTGT\$AGG

Alignment of BS-treated sequences

Compression

Ordered *R*-suffixes can be *compressed*: Burrows-Wheeler

\$AGGTTGCCAGTGT AGGTTGCCAGTGT\$ AGTGT\$AGGTTGCC CAGTGT\$AGGTTGC CCAGTGT\$AGGTTG GCCAGTGT\$AGGTT GGTTGCCAGTGT\$A GT\$AGGTTGCCAGT GTGT\$AGGTTGCCA GTTGCCAGTGT\$AG T\$AGGTTGCCAGTG TGCCAGTGT\$AGGT TGT\$AGGTTGCCAG TTGCCAGTGT\$AGG

Aligning BS-treated sequences: the problem

Determine Methylated C's (i.e. C^{m} 's) along the reference R

- Sodium Bisulphite converts un-methylated cytosines to uraciles
- Methylated cytosines remain un-converted
- ⇒ after PCR un-methylated cytosines appear as thymines and methylated ones remain unaltered

Alignment of BS-treated sequences

Aligning BS-treated sequences: the problem

Aligning BS-treated sequences: the problem

Determine Methylated C's (i.e. C^{m} 's) along the reference R

- Sodium Bisulphite converts un-methylated cytosines to uraciles
- Methylated cytosines remain un-converted
- ⇒ after PCR un-methylated cytosines appear as thymines and methylated ones remain unaltered

Two (main) issues

- some mismatch conveys information
- we are working with a 5-characters alphabet

Alignment of BS-treated sequences

Characters and mismatches

"Natural" approach

Ignore T - C mismatches (\Rightarrow identify *T*'s and *C*'s \Rightarrow use a 3-characters alphabet!)

Alignment of BS-treated sequences

Characters and mismatches

"Natural" approach

Ignore T - C mismatches

 $(\Rightarrow$ identify T's and C's \Rightarrow use a 3-characters alphabet!)

Hamming distance to "render" methylated C's

 d_{GH} : the Generalized Hamming distance for BS-treated sequences, assigns

0 distance to T-read/C-reference

mismatches (as well as G-read/A-reference)

ERNE-BS5

d_{GH} indirectly reduces the alphabet to 3 characters

- Many reads do not reach a threshold to be reliably aligned
- Many misalignment

Idea: use the *fifth* character to improve alignment

Methylated C's can be used to disambiguate multiple alignments

ERNE-BS5

 N_i^C number of *C*'s read at position *i*; N_i^T number of *T*'s read at position *i*;

Definition (Methylation level)

$$\mu(i) = \frac{N_i^C}{N_i^C + N_i^T}$$

Definition (Context-aware Hamming distance d_{α})

Watson strand:

$$\alpha(i, \mathbf{x}) = \begin{cases} 1 - \mu(i) \\ \mu(i) \\ 0 \end{cases}$$

if
$$R[i] = C \land x = C$$
;
if $R[i] = C \land x = T$;
otherwise.

Crick strand analogous.

ERNE-BS5

The full strategy

step 1Align reads using d_{GH} step 2On-line compute d_{α} step 3Align reads multiply aligning using d_{α} step 4If new alignments are found, go to step 2

Results on Arabidopsis thaliana, real data

Further work

- Extensively test ERNE-BS5
- Encode more in d_{α}
- Integrate more knowledge
- Study the two methylation's patterns
- Compress