Combinatorial Optimization Approaches for Clustering and Biclustering

Paola Festa

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università degli Studi di Napoli FEDERICO II http://www.dma.unina.it/~festa/ E-mail: paola.festa@unina.it

- Introduction to Data Clustering:
 - definitions and notation;
 - problem formulation;
 - state-of-the-art methods;
 - our recent proposal: a hybrid GRASP with Path Relinking;
 - analysis of a case study for Biological Data on 5 datasets.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

- Introduction to Data Clustering:
 - definitions and notation;
 - problem formulation;
 - state-of-the-art methods;
 - our recent proposal: a hybrid GRASP with Path Relinking;
 - analysis of a case study for Biological Data on 5 datasets.
- Introduction to Data BiClustering:
 - definitions and notation;
 - Problem formulation;
 - state-of-the-art methods;
 - our recent proposal: a GRASP-like algorithm;
 - analysis of a case study for Biological Data on 2 datasets.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

- Introduction to Data Clustering:
 - definitions and notation;
 - problem formulation;
 - state-of-the-art methods;
 - our recent proposal: a hybrid GRASP with Path Relinking;
 - analysis of a case study for Biological Data on 5 datasets.
- Introduction to Data BiClustering:
 - definitions and notation;
 - Problem formulation;
 - state-of-the-art methods;
 - our recent proposal: a GRASP-like algorithm;
 - analysis of a case study for Biological Data on 2 datasets.
- Conclusions and Future directions.

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Data Clustering

Outline

Data Clustering Collaborations

Description

Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, **5 Problem Formulation**, **(6) Problem Formulation**, ⑦ **Problem Formulation**, (8) **Graph** representation State-of-the-art, ① State-of-the-art, 2 State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, 5 State-of-the-art, 6

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 3/81

Collaborations

Material on Data clustering presented in this seminar is based on joint work with:

✔ Mauricio G.C. Resende

AT&T Labs Research, Florham Park, NJ, USA

✔ Ricardo M.A. Silva

Universidade Federal de Lavras, Lavras, MG, Brazil

✓ Rafael M.D. Frinhani and Geraldo R. Mateus

Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil Outline

Data Clustering Collaborations Description Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) **Problem Formulation**, **(6) Problem Formulation**, ⑦ **Problem Formulation**, **® Graph** representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art. ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking**

for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Description

Task: to group data (viewed as a set of *objects*) s.t.

- ✓ the most similar objects belong to the same group or *cluster*, and
- ✓ the dissimilar objects are assigned to different clusters.

Outline

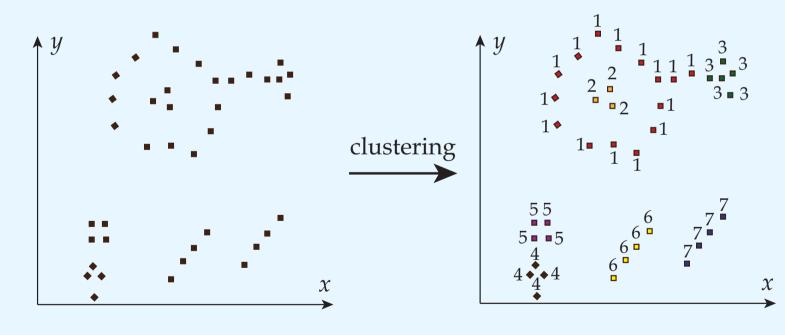
Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation, ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation, 6
Problem Formulation , ⑦
Problem Formulation, ®
Graph representation
State-of-the-art, ①
State-of-the-art, 2
State-of-the-art, 3
State-of-the-art, ④
State-of-the-art, (5)
State-of-the-art, 6
GRASP + Path Relinking
for Data Clustering
Experimental results on
Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...


Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 5/81

Description

Task: to group data (viewed as a set of *objects*) s.t.

- ✓ the most similar objects belong to the same group or *cluster*, and
- ✓ the dissimilar objects are assigned to different clusters.

Example for a 2-dimensional data set ("easy" for humans):

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation , ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation, 6
Problem Formulation , ⑦
Problem Formulation, ®
Graph representation
State-of-the-art, ①
State-of-the-art, ⁽²⁾
State-of-the-art, 3
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
GRASP + Path Relinking

for Data Clustering Experimental results on

Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/ \sim festa

Description

Task: to group data (viewed as a set of *objects*) s.t.

- ✓ the most similar objects belong to the same group or *cluster*, and
- ✓ the dissimilar objects are assigned to different clusters.

Example for a 2-dimensional data set ("easy" for humans):

Bad new: most real–world problems involve clustering in higher dimensions!

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation , ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , ⑤
Problem Formulation , ©
Problem Formulation , ⑦
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, ^②
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, (5)
State-of-the-art, 6
GRASP + Path Relinking

for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 5/81

Applications

Applications include:

- ➡ natural language processing [Ushioda et al, 1996];
- Solve the state of the stat
- ➡ image segmentation [White et al, 1991];
- biological data.
 [Jain et al, 1999 Jiang et al, 2004 Nascimento et al, 2010].

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation , ²
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation , ©
Problem Formulation , ⑦
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, @
State-of-the-art, 3
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
GRASP + Path Relinking

for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ①

We are given

- \Leftrightarrow a set of *N* objects $\mathcal{O} = \{o_1, \ldots, o_N\}$;
- \Leftrightarrow a set of *M* of pre-assigned clusters $S = \{S_1, \ldots, S_M\}$;
- a function *d* : $\mathcal{O} \times \mathcal{O} \mapsto \mathbb{R}$ that assigns to each $o_i, o_j \in \mathcal{O}$ a "distance" or "similarity" $d_{ij} \in \mathbb{R}$

(usually,
$$d_{ij} \ge 0$$
, $d_{ii} = 0$, $d_{ij} = d_{ji}$, for $i, j = 1, ..., N$);

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation, ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation, 6
Problem Formulation , ⑦
Problem Formulation, ®
Graph representation
State-of-the-art, ①
State-of-the-art, ②
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
GRASP + Path Relinking
for Data Clustering
Townships on tall second to an

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ①

We are given

- \Leftrightarrow a set of *N* objects $\mathcal{O} = \{o_1, \ldots, o_N\}$;
- \Leftrightarrow a set of *M* of pre-assigned clusters $S = \{S_1, \ldots, S_M\}$;
- a function *d* : $\mathcal{O} \times \mathcal{O} \mapsto \mathbb{R}$ that assigns to each *o_i*, *o_j* ∈ \mathcal{O} a "distance" or "similarity" *d_{ij}* ∈ \mathbb{R}

(usually,
$$d_{ij} \ge 0$$
, $d_{ii} = 0$, $d_{ij} = d_{ji}$, for $i, j = 1, ..., N$);

By introducing

a set of $N \times M$ decision variables $x_{ik} \in \{0, 1\}$ s.t. $x_{ik} = \begin{cases} 1, & \text{if } o_i \in \mathcal{O} \text{ is in cluster } S_k; \\ 0, & \text{otherwise.} \end{cases}$

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation , ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation, 6
Problem Formulation , (7)
Problem Formulation, ®
Graph representation
State-of-the-art, ①
State-of-the-art, ②
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, (5)
State-of-the-art, 6
GRASP + Path Relinking for Data Clustering
0
Experimental results on

Data BiClustering

Biological Data

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ⁽²⁾

Data clustering can be formulated as a **non-linear 0-1 problem**: [Nascimento et al's (2010)]

(DC) min
$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \sum_{k=1}^{M} x_{ik} \cdot x_{jk}$$

s.t.

(1)
$$\sum_{\substack{k=1\\N}}^{M} x_{ik} = 1,$$
 $i = 1, \dots, N$
(2) $\sum_{\substack{i=1\\i=1}}^{N} x_{ik} \ge 1,$ $k = 1, \dots, M$
(3) $x_{ik} \in \{0, 1\},$ $i = 1, \dots, N, \ k = 1, \dots, M.$

(DC) is a non-linear 0-1 problem:

 $\min \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \sum_{k=1}^{M} x_{ik} \cdot x_{jk} \Longrightarrow \qquad \begin{array}{c} \text{Minimize} \\ \text{objects in } \end{array}$

Minimize the distance between objects in the same cluster Outline

Data Clustering Collaborations Description Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) **Problem Formulation**, **© Problem Formulation**, ⑦ **Problem Formulation**, **® Graph representation** State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art. ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking** for Data Clustering Experimental results on **Biological Data Data BiClustering**

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

Problem Formulation, ③

Data clustering can be formulated as a **non-linear 0-1 problem**: [Nascimento et al's (2010)]

(DC) min
$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \sum_{k=1}^{M} x_{ik} \cdot x_{jk}$$

s.t.

(1)
$$\sum_{\substack{k=1\\N}}^{M} x_{ik} = 1,$$
 $i = 1, \dots, N$
(2) $\sum_{\substack{i=1\\i=1}}^{N} x_{ik} \ge 1,$ $k = 1, \dots, M$
(3) $x_{ik} \in \{0, 1\},$ $i = 1, \dots, N, \ k = 1, \dots, M.$

$$\sum_{k=1}^{M} x_{ik} = 1, i = 1, \dots, N \Longrightarrow$$
 They assure that each of longs to only one cluster

Outline

Data Clustering Collaborations Description Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, **⑤ Problem Formulation**, **© Problem Formulation**, ⑦ **Problem Formulation**, **® Graph representation** State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking** for Data Clustering Experimental results on **Biological Data Data BiClustering**

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola, festa@unina, it - Web; http://www.dma.unina.it/~fe B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 9/81

be-

Problem Formulation, ④

Data clustering can be formulated as a **non-linear 0-1 problem**: [Nascimento et al's (2010)]

$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \sum_{k=1}^{M} x_{ik} \cdot x_{jk}$$

s.t.

(1)
$$\sum_{\substack{k=1\\N}}^{M} x_{ik} = 1,$$
 $i = 1, \dots, N$
(2) $\sum_{\substack{i=1\\i=1}}^{N} x_{ik} \ge 1,$ $k = 1, \dots, M$
(3) $x_{ik} \in \{0, 1\},$ $i = 1, \dots, N, \ k = 1, \dots, M.$

$$\sum_{i=1}^{N} x_{ik} \ge 1, k = 1, \dots, M \Longrightarrow$$

They guarantee that each cluster
$$S_k$$
 contains at least one object

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation, ⁽²⁾
Problem Formulation, 3
Problem Formulation , ④
Problem Formulation , ⑤
Problem Formulation, 6
Problem Formulation, \mathcal{D}
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, @
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
GRASP + Path Relinking for Data Clustering
Experimental results on
Biological Data
Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, **5**

Remedy to the non-linear o.f. = linearization [Nascimento et al, 2010]:

 $\forall i, j = 1, \dots, N, \quad y_{ij} = 1 \quad \Leftrightarrow \quad o_i, o_j \in \mathcal{O} \text{ are in the same cluster.}$

(LDC) min
$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot y_{ij}$$

 $\Lambda \Lambda$

s.t.

(1)
$$\sum_{\substack{k=1\\N}}^{M} x_{ik} = 1, \qquad i = 1, \dots, N$$

(2) $\sum_{\substack{i=1\\i=1}}^{N} x_{ik} \ge 1, \qquad k = 1, \dots, M$

(3)
$$x_{ik} \in \{0, 1\},$$
 $i = 1, \dots, N, k = 1, \dots, M$

(4)
$$y_{ij} \ge x_{ik} + x_{jk} - 1, \quad i = 1, \dots, N, \ j = i + 1, \dots, N, \ k$$

(5) $y_{ij} \ge 0, \qquad \qquad i = 1, \dots, N, \ j = i + 1, \dots, N.$

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation, ⁽²⁾
Problem Formulation, 3
Problem Formulation, ④
Problem Formulation, 5
Problem Formulation , (6)
Problem Formulation , ⑦
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, ②
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
GRASP + Path Relinking
for Data Clustering

Experimental results on <u>Biological Data</u> <u>Data BiClustering</u> A new GRASP-like algorithm

Experimental results and Biological Significance

for Data Biclustering

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 11/81

Problem Formulation, **6**

Linearization [Nascimento et al, 2010]:

				Data Clustering
		$N\!-\!1$ N		Collaborations
(IDC)	\min	$\sum \sum d_{ij} \cdot y_{ij}$		Description
(LDC)	111111	$\sum a_{ij} \cdot g_{i}$	J	Applications
		i = 1 j = i + 1		Problem Formulation , ①
				Problem Formulation , ⁽²⁾
	s.t.			Problem Formulation , ③
				Problem Formulation , ④
		\underline{M}		Problem Formulation, (5)
	(1)	$\sum x_{ik} = 1,$	$i=1,\ldots,N$	Problem Formulation , 6
	(-)	$\sum \omega_{lk} = i,$		Problem Formulation , <i>7</i>
		$k{=}1$		Problem Formulation , ®
		N		Graph representation
	(2)	\sum_{m} > 1	$l_{a} = 1$ M	State-of-the-art, ①
	(2)	$\sum x_{ik} \ge 1,$	$k=1,\ldots,M$	State-of-the-art, 2
		$\overline{i=1}$		State-of-the-art, ③
				State-of-the-art, ④
	(3)	$x_{ik} \in \{0, 1\},$	$i = 1,, N, \ k = 1,, M$	State-of-the-art, 5
				State-of-the-art, 6
	(4)	$u_{i:i} > r_{i:i} + r_{i:i} -$	$i=1, i=1,\ldots,N, \ j=i+1,\ldots,N$	N k CERAJE + Path Relia Ving
	(\mathbf{T})	$g_{ij} \leq x_{ik} + x_{jk}$	$1, 0 = 1, \dots, 1, 0 = 0 + 1, \dots, 1$	for Data Clustering
	$(\boldsymbol{ $	$\sim > 0$		
	(5)	$y_{ij} \ge 0,$	$i=1,\ldots,N,j=i+1,\ldots,N$	V. Experimental results on
				Biological Data
				Data BiClustering
N	-1 N		nimize the distance between	A many CDACD lite at a stiller
Ζ			inimize the distance between	A new GRASP-like algorithm for Data Biclustering
2		$d_{ij} \cdot y_{ij} \Longrightarrow$	jects in the same cluster	
<i>i</i> =	$=1 \ j=i+$		jects in the same cluster	Experimental results and
<i>u</i> –	-1 j - i	÷		Biological Significance

Experimental results and **Biological Significance**

To conclude...

Outline

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

Problem Formulation, ⑦

Linearization [Nascimento et al, 2010]:

DC) min
$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot y_{ij}$$

s.t.
(1)
$$\sum_{k=1}^{M} x_{ik} = 1, \qquad i = 1, \dots, N$$

(2)
$$\sum_{i=1}^{N} x_{ik} \ge 1, \qquad k = 1, \dots, M$$

(3)
$$x_{ik} \in \{0, 1\}, \qquad i = 1, \dots, N, \ k = 1, \dots, M$$

(4)
$$y_{ij} \ge x_{ik} + x_{jk} - 1, \qquad i = 1, \dots, N, \ j = i + 1, \dots, N, \ k = 1, \dots, N, \ j = i + 1, \dots, N.$$

(5)
$$y_{ij} \ge 0, \qquad i = 1, \dots, N, \ j = i + 1, \dots, N.$$

(4)
$$(4) + (5) \Longrightarrow \qquad They guarantee that \ y_{ij} = 1 \text{ if} \\ x_{ik} = x_{jk} = 1, \text{ i.e. } o_i, o_j \in \mathcal{O}$$

are in the same cluster

Outline

Data Clustering Collaborations Description Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) **Problem Formulation**, **© Problem Formulation**, ⑦ **Problem Formulation**, **® Graph representation** State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, (5) State-of-the-art, 6 CRASP + Path Relinking for Data Clustering Experimental results on **Biological Data**

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

(L

E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~festa

Problem Formulation, **®**

Linearization [Nascimento et al, 2010]:

(LDC) min
$$\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot y_{ij}$$

s.t.
(1)
$$\sum_{k=1}^{M} x_{ik} = 1, \qquad i = 1, \dots, N$$

(2)
$$\sum_{i=1}^{N} x_{ik} \ge 1, \qquad k = 1, \dots, M$$

(3)
$$x_{ik} \in \{0, 1\}, \qquad i = 1, \dots, N, \ k = 1, \dots, M$$

(4)
$$y_{ij} \ge x_{ik} + x_{jk} - 1, \qquad i = 1, \dots, N, \ j = i + 1, \dots, N,$$

(5)
$$y_{ij} \ge 0, \qquad i = 1, \dots, N, \ j = i + 1, \dots, N,$$

Note:

(LDC) has $\frac{N^2}{2}$ more variables and $\frac{N \cdot (N-1) \cdot (M+1)}{2}$ more constraints

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation, ①
Problem Formulation , ⁽²⁾
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , ⑤
Problem Formulation , ©
Problem Formulation, \mathcal{D}
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, ②
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, (5)
State-of-the-art, 6
GRASP, + Path, Relinking for Data Clustering
0
Experimental results on
Biological Data
Data BiClustering
A new GRASP-like algorithm

Experimental results and Biological Significance

for Data Biclustering

To conclude...

than (DC) but it is "easier".

k

Graph representation

Datasets can be represented via a weighted undirected graph. Given:

- \Leftrightarrow the set of objects $\mathcal{O} = \{o_1, \ldots, o_N\};$
- Solution d: O × O → ℝ that assigns to each i, j ∈ O a
 "distance" or "similarity" d_{ij} ∈ ℝ
 (usually, d_{ij} ≥ 0, d_{ii} = 0, d_{ij} = d_{ji}, for i, j = 1,...,N),

the following weighted undirected graph G = (V, E, w) can be defined:

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation, ⁽²⁾
Problem Formulation, ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation, 6
Problem Formulation , ⑦
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, 2
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, 5
State-of-the-art, 6
CDACD + Deth Deligibility
GRASP + Path Relinking
for Data Clustering
Experimental results on
Biological Data
Data BiClustering

Experimental results and Biological Significance

for Data Biclustering

Graph representation

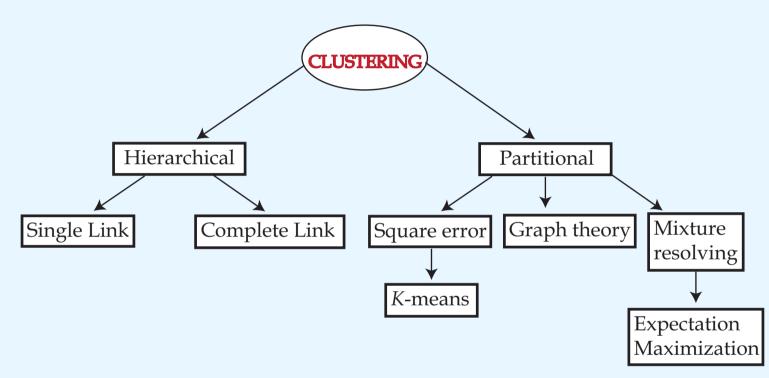
Datasets can be represented via a weighted undirected graph. Given:

- \Leftrightarrow the set of objects $\mathcal{O} = \{o_1, \ldots, o_N\};$
- Solution *d*: $\mathcal{O} \times \mathcal{O} \mapsto \mathbb{R}$ that assigns to each *i*, *j* ∈ \mathcal{O} a "distance" or "similarity" *d*_{*ij*} ∈ ℝ (usually, *d*_{*ij*} ≥ 0, *d*_{*ii*} = 0, *d*_{*ij*} = *d*_{*ji*}, for *i*, *j* = 1, ..., *N*),

the following weighted undirected graph G = (V, E, w) can be defined:

 $\Box V = \mathcal{O};$

- **□** Edges in *E* indicate the relationship between objects;
- $\square w_{ij} = d_{ij}, \forall i, j \in V \text{ (i.e., } o_i, o_j \in \mathcal{O}\text{)}.$

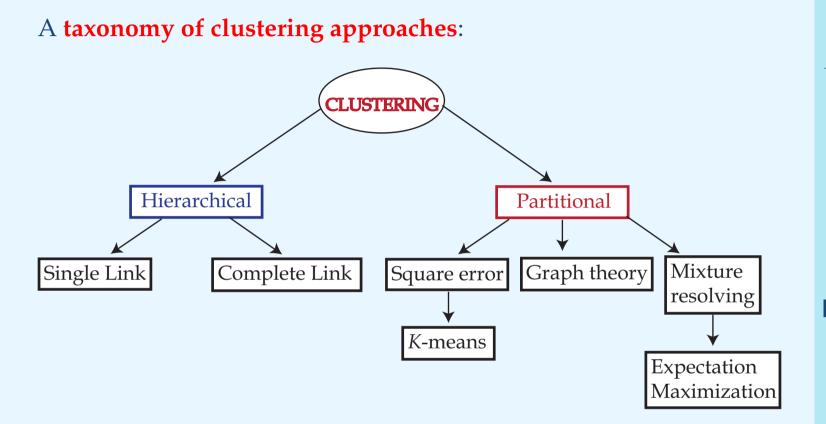

Outline

Data Clustering
Collaborations
Description
Applications
Problem Formulation , ①
Problem Formulation , 2
Problem Formulation , ③
Problem Formulation , ④
Problem Formulation , 5
Problem Formulation , 6
Problem Formulation , \mathcal{D}
Problem Formulation , ®
Graph representation
State-of-the-art, ①
State-of-the-art, @
State-of-the-art, ③
State-of-the-art, ④
State-of-the-art, 6
State-of-the-art, 6
GRASP + Path Relinking
for Data Clustering
Experimental results on
Biological Data
Data BiClustering
ŭ
A new GRASP-like algorithm
for Data Biclustering

Experimental results and Biological Significance

State-of-the-art, ①

A taxonomy of clustering approaches:


Outline

Data Clustering Collaborations Description **Applications Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) **Problem Formulation**, **© Problem Formulation**, ⑦ **Problem Formulation**, **® Graph** representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP** + Path Relinking for Data Clustering Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering Experimental results and **Biological Significance**

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fes


State-of-the-art, 2

Hierarchical versus Partitioning Algorithms:

- ✓ Hierarchical methods produce a nested series of partitions;
- ✓ Partitional methods produce only one.

Outline

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

State-of-the-art, 3

A taxonomy of clustering approaches: CLUSTERING Hierarchical Partitional Mixture Single Link Complete Link Graph theory Square error resolving *K*-means Expectation Maximization

Partitional Algorithms:

K-means: it starts with a random initial partition and keeps reassigning objects to "close" clusters until a convergence criterion is met.

Outline

Data Clustering Collaborations Description **Applications Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) **Problem Formulation**, **© Problem Formulation**, ⑦ **Problem Formulation**, **® Graph representation** State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art. ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking** for Data Clustering Experimental results on **Biological Data**

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

State-of-the-art, ④

A taxonomy of clustering approaches:

Graph-Theoretic Algorithms:

✓ They are *divisive* algorithms is based on construction of a MST of the data and then the deletion of the MST edges with the largest lengths to generate clusters.

Outline

Data Clustering Collaborations Description **Applications Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) Problem Formulation, 6 **Problem Formulation**, ⑦ **Problem Formulation**, **® Graph** representation State-of-the-art, ① State-of-the-art, 2 State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking** for Data Clustering Experimental results on **Biological Data**

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

State-of-the-art, 5

A taxonomy of clustering approaches:

Mixture-Resolving Algorithms:

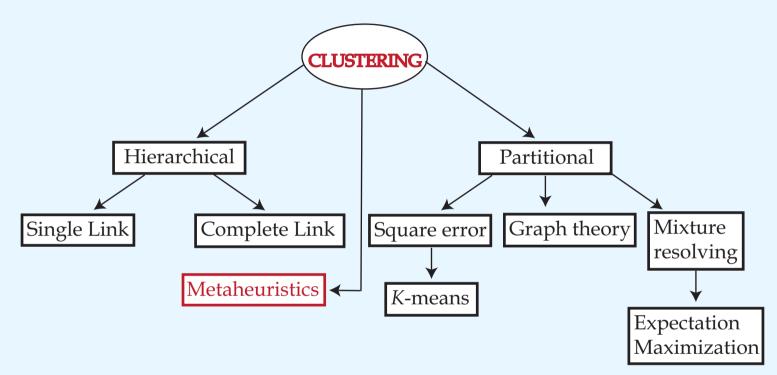
✓ The underlying assumption is that the objects are drawn from one of several distributions (usually, Gaussian), and the goal is to identify the parameters of each (e.g., a maximum likelihood estimate).

Outline

Data Clustering Collaborations Description Applications **Problem Formulation**, ① **Problem Formulation**, ⁽²⁾ **Problem Formulation**, ③ **Problem Formulation**, ④ **Problem Formulation**, (5) Problem Formulation, 6 **Problem Formulation**, ⑦ **Problem Formulation**, **® Graph** representation State-of-the-art, ① State-of-the-art, 2 State-of-the-art, ③ State-of-the-art. ④ State-of-the-art, 5 State-of-the-art, 6 **GRASP + Path Relinking**

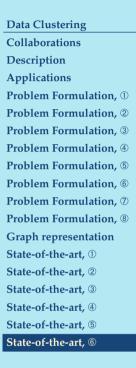
for Data Clustering

Experimental results on Biological Data


Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance


State-of-the-art, 6

A taxonomy of clustering approaches:

Metaheuristic approaches, including

Outline

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, 2 Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data**

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

GRASP + Path Relinking for Data Clustering

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 22/81

Our proposal: GRASP + PR

Our proposal for Data Clustering: **GRASP + Path Relinking**.

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction , ①
GRASP Construction, 2
GRASP Construction, 3
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ^②
Path relinking, ③
Our proposal: GRASP+PR
GRASP+PR variants
Experimental results on
Biological Data
Diological Data
Data BiClustering
0
A new GRASP-like algorithm
Compare Distance and a

for Data Biclustering Experimental results and

Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

Our proposal: GRASP + PR

Our proposal for Data Clustering: **GRASP + Path Relinking**.

- As Nascimento et al (2010) and graph theoretic algorithms, we have represented datasets as a weighted undirected graph G = (V, E, w).
- We have been inspired by Nascimento et al.'s GRASP adopting the max number of its without improvement as stopping criterion.
- At each GRASP iteration, we apply path relinking as intensification procedure.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering**

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start metaheuristic, where each iteration consists of two phases.

```
algorithm GRASP(f(\cdot), g(\cdot), \mathcal{N}, \text{Seed})
    x_{best} := \emptyset; \quad f(x_{best}) := +\infty;
1
    while (stopping criterion not satisfied) do
2
3
      x:=ConstructGreedyRandomizedSolution(Seed, q(\cdot));
      if (x not feasible) then
4
5
        x := repair(x);
      endif
6
7
      x:=LocalSearch(x, f(\cdot), \mathcal{N});
      if (f(x) < f(x_{best})) then
8
9
        x_{best} := x;
       endif
10
11
     endwhile;
    return(x_{best});
12
end GRASP
```

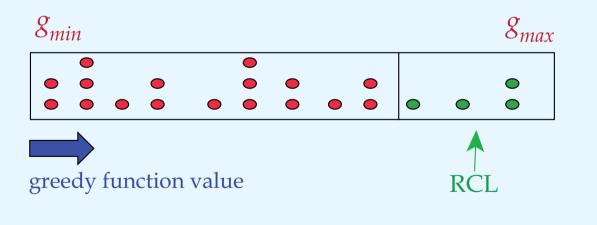
Outline

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data**

Data BiClustering

A new GRASP-like algorithm for Data Biclustering


Experimental results and Biological Significance

GRASP Construction, ①

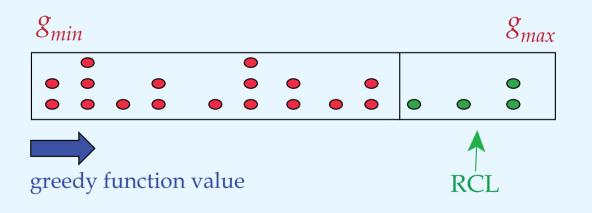
In a typical iteration let S be a partial solution. Let g_{min} and g_{max} be the smallest and the largest greedy values among the |L| candidates, respectively, i.e.

 $g_{min} = \min_{e \in L} g(e), \qquad g_{max} = \max_{e \in L} g(e).$

A restricted candidate list RCL is made up of all elements $e \in L$ with the best greedy values g(e).

Outline

Data Clustering


GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering Experimental results and **Biological Significance** To conclude...

GRASP Construction, ①

In a typical iteration let S be a partial solution. Let g_{min} and g_{max} be the smallest and the largest greedy values among the |L| candidates, respectively, i.e.

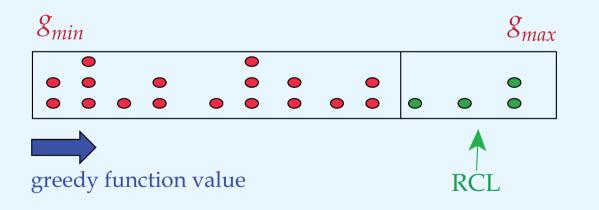
 $g_{min} = \min_{e \in L} g(e), \qquad g_{max} = \max_{e \in L} g(e).$

A restricted candidate list RCL is made up of all elements $e \in L$ with the best greedy values g(e).

Random component: $e := \texttt{select}(\texttt{RCL}); S := S \cup \{e\};$

Outline

Data Clustering


GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering Experimental results and **Biological Significance**

GRASP Construction, ①

In a typical iteration let S be a partial solution. Let g_{min} and g_{max} be the smallest and the largest greedy values among the |L| candidates, respectively, i.e.

 $g_{min} = \min_{e \in L} g(e), \qquad g_{max} = \max_{e \in L} g(e).$

A restricted candidate list RCL is made up of all elements $e \in L$ with the best greedy values g(e).

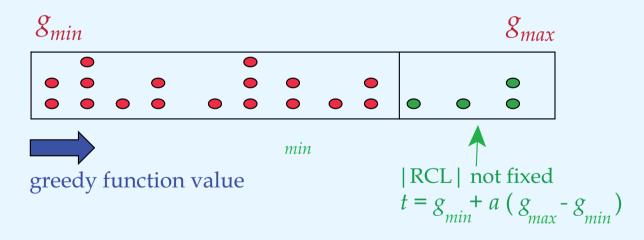
Random component: e := select(RCL); $S := S \cup \{e\}$; Adaptive component: greedy function values depend on the partial solution constructed so far.

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~festa

B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 25/81

Outline

Data Clustering


GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering Experimental results and **Biological Significance**

GRASP Construction, ⁽²⁾

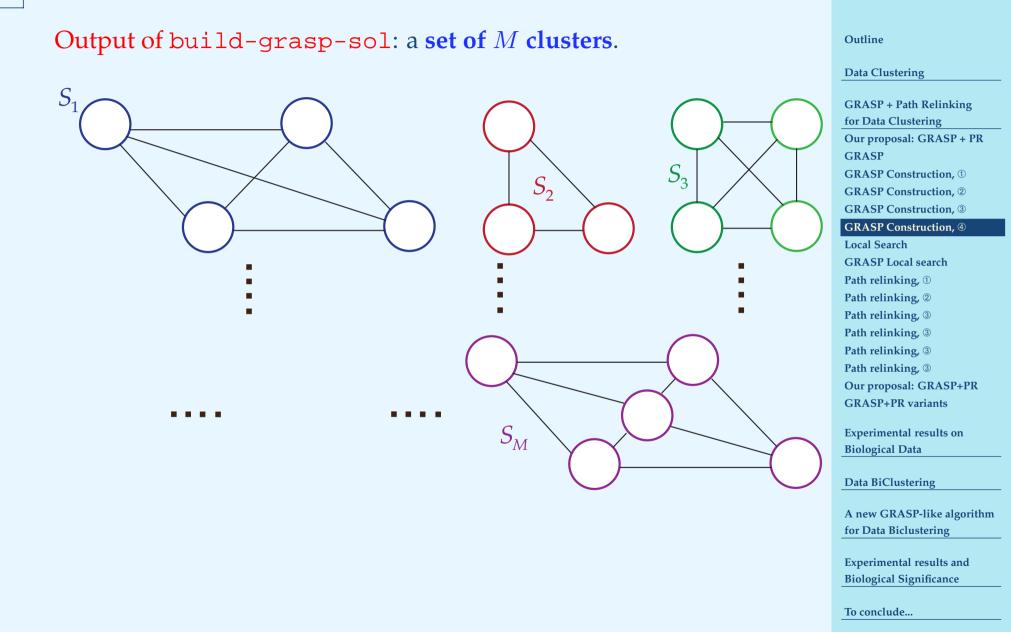
To build the RCL we have adopted a *value-based* (VB) mechanism:

RCL is associated with a parameter $a \in [0, 1]$ and a threshold value $t = g_{min} + a \cdot (g_{max} - g_{min})$:

$$\mathsf{RCL} = \{e \in L : g(e) \ge t\}$$

Outline

Data Clustering


GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP** Construction, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

GRASP Construction, ③

Outline **procedure** build-grasp-sol(N, M, O) **Data Clustering** 1 $V := \mathcal{O}; \quad E := \{(i, j) \mid i, j \in V, i < j\};$ **GRASP + Path Relinking** L := sort(E); /* w.r.t. distances/weights (non decreasing) */ 2 for Data Clustering for k = 1 to M - 1 do /* a set of M clusters */ Our proposal: GRASP + PR 3 GRASP $g_{min} := \operatorname*{argmin}_{(i,j)\in L} d_{ij}; \quad g_{max} := \arg \max_{(i,j)\in L} d_{ij};$ 4 **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP** Construction, ③ $a := select([0,1]); \quad t := q_{max} + a \cdot (q_{min} - q_{max});$ 5 **GRASP Construction**, ④ Local Search $RCL:= \{(i, j) \in L \mid d_{ij} > t\}; (i, j) := select(RCL);$ 6 **GRASP Local search** Path relinking, ① $S_i := S_i := \emptyset;$ 7 Path relinking, ⁽²⁾ for each $v \in V$ s.t. $(v, i), (v, j) \in E$ do 8 Path relinking, ③ Path relinking, ③ 9 if $(d_{vi} < d_{vj})$ then $S_i := S_i \cup \{v\}$; Path relinking, ③ Path relinking, ③ else $S_i := S_i \cup \{v\};$ 10**Our proposal: GRASP+PR GRASP+PR** variants endfor 11 Experimental results on 12 for each $u_i \in S_i$ and $u_i \in S_i$ do **Biological Data** $E := E \setminus \{(u_i, u_j)\}; \quad L := L \setminus \{(u_i, u_j)\};$ 13 **Data BiClustering** endfor 14 A new GRASP-like algorithm 15 endfor for Data Biclustering 16 return (V, E); Experimental results and **Biological Significance** end build-grasp-sol To conclude...

GRASP Construction, ④

Local Search

To define **local search**, one needs to specify a local neighborhood structure N(S) of a solution S:

 $N(S) = \{\overline{S} \mid \overline{S} \text{ is an elementary modification of } S\}.$

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ Our proposal: GRASP+PR **GRASP+PR** variants Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Local Search

To define **local search**, one needs to specify a local neighborhood structure N(S) of a solution S:

 $N(S) = \{\overline{S} \mid \overline{S} \text{ is an elementary modification of } S\}.$

A generic local search algorithm

① takes as input a solution S that is considered as *current solution* \overline{S} ;

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction, ①
GRASP Construction, 2
GRASP Construction, 3
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ⁽²⁾
Path relinking, ③
Our proposal: GRASP+PR
GRASP+PR variants
Experimental results on
Biological Data
Data B'Olastarias
Data BiClustering
A new GRASP-like algorithm
for Data Biclustering
0
Experimental results and

Biological Significance

Local Search

To define **local search**, one needs to specify a local neighborhood structure N(S) of a solution S:

 $N(S) = \{\overline{S} \mid \overline{S} \text{ is an elementary modification of } S\}.$

A generic local search algorithm

- ① takes as input a solution S that is considered as *current solution* \overline{S} ;
- ② iteratively, explores $\mathcal{N}(\overline{\mathcal{S}})$:

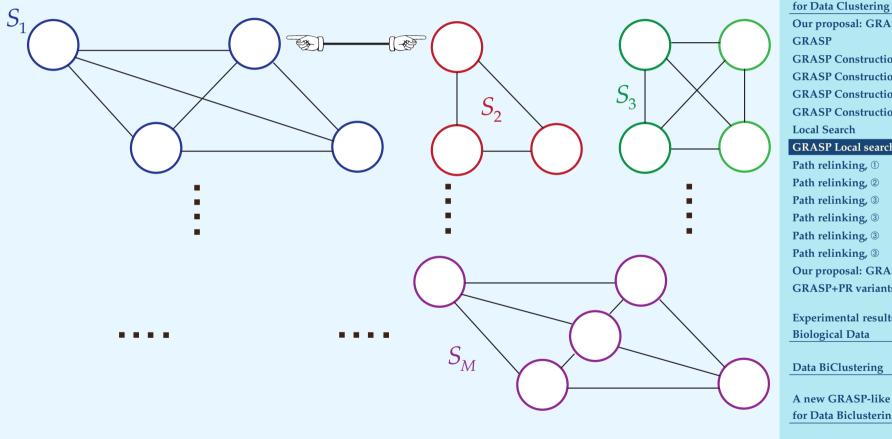
 $\hat{\mathfrak{S}}$ if there exists $\hat{\mathcal{S}} \in \mathcal{N}(\overline{\mathcal{S}})$ better than $\overline{\mathcal{S}}$, then $\overline{\mathcal{S}} := \hat{\mathcal{S}}$ and the procedure continues exploring $\mathcal{N}(\overline{\mathcal{S}})$;

 \Leftrightarrow otherwise, it outputs a *locally optimal solution* \overline{S} .

Computational complexity of each iteration: $O(|\mathcal{N}(\overline{\mathcal{S}})|)$.

Outline

Data Clustering


GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction, ①
GRASP Construction, 2
GRASP Construction, 3
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ²
Path relinking, ③
Our proposal: GRASP+PR
GRASP+PR variants
T 1 (1 1)
Experimental results on
Biological Data
Data BiClustering
Dum Dictusicing
A new GRASP-like algorithm
for Data Biclustering
Experimental results and

To conclude...

Biological Significance

GRASP Local search

Modification of S consists of transferring an object from a cluster to another one in order to improve the solution:

Outline

Data Clustering

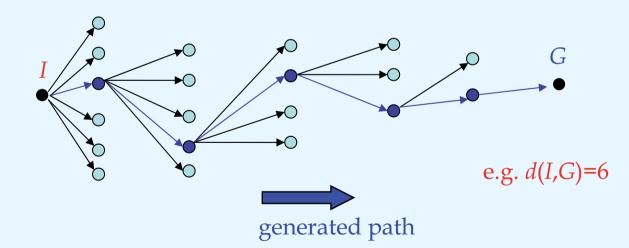
GRASP + Path Relinking

Our proposal: GRASP + PR **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP** Local search Path relinking, ① Path relinking, 2 Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and **Biological Significance**


To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

It consists in exploring trajectories that connect high quality solutions (members of a "small" population *P*, called Elite Set).

Path is generated by selecting modifications (moves) that introduce attributes of the guiding solution *G* in the initial solution *I*.

At each step, <u>all moves</u> (d(I,G)) that incorporate attributes of the guiding solution are analyzed and best move is taken.

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction , ①
GRASP Construction, 2
GRASP Construction, ③
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ²
Path relinking, ③
Our proposal: GRASP+PR
GRASP+PR variants
Europeins on tall according on
Experimental results on Biological Data
Diological Data
Data BiClustering
0
A new GRASP-like algorithm
for Data Biclustering
Experimental results and
Biological Significance
To conclude

It consists in exploring trajectories that connect high quality solutions (members of a "small" population *P*, called Elite Set).

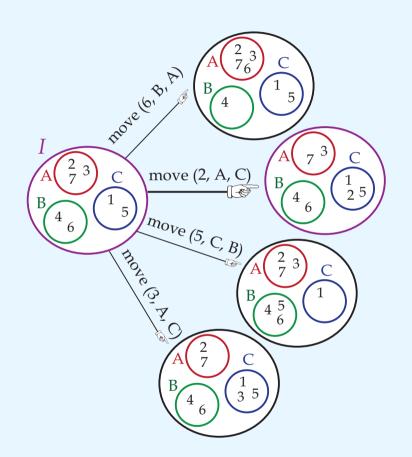
Path is generated by selecting modifications (moves) that introduce attributes of the guiding solution *G* in the initial solution *I*.

At each step, <u>all moves</u> (d(I, G)) that incorporate attributes of the guiding solution are analyzed and best move is taken.

Theorem.

For any instance \mathcal{I} of (DC) and for any pair of solutions I and G for \mathcal{I} such that d(I, G) = k there exists at least one path

$$\mathcal{P}_{I,G} = \{I = w^0, w^1, \dots, w^k = G\}$$


connecting *I* to *G* in the solution space.

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction , ①
GRASP Construction, 2
GRASP Construction, 3
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ⁽²⁾
Path relinking, ③
Our proposal: GRASP+PR
GRASP+PR variants
Experimental results on
Biological Data
Data BiClustering
Data DiCiustering
A new GRASP-like algorithm
for Data Biclustering
č
Experimental results and
Biological Significance
To conclude

Path relinking for Data Clustering:

Outline

Data Clustering

GRASP + Path Relinking

for Data Clustering Our proposal: GRASP + PR

GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search 6 **GRASP Local search** 7 С Path relinking, ① 1 Path relinking, 2 32 4 5

(т

В

Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

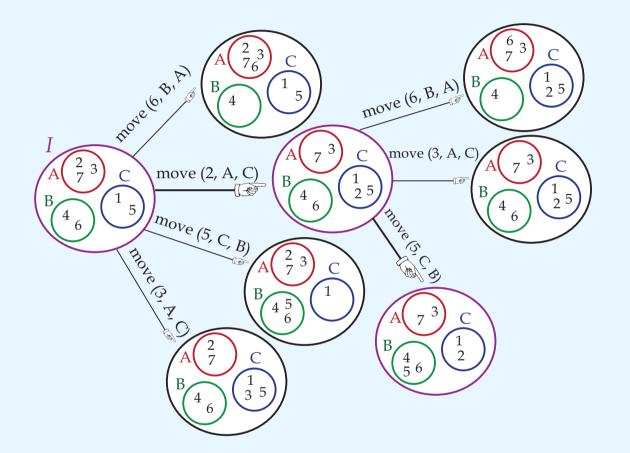
To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola, festa@unina, it - Web: http://www.dma.unina.it/~fest

(+

В

6


7

4 ₅

С

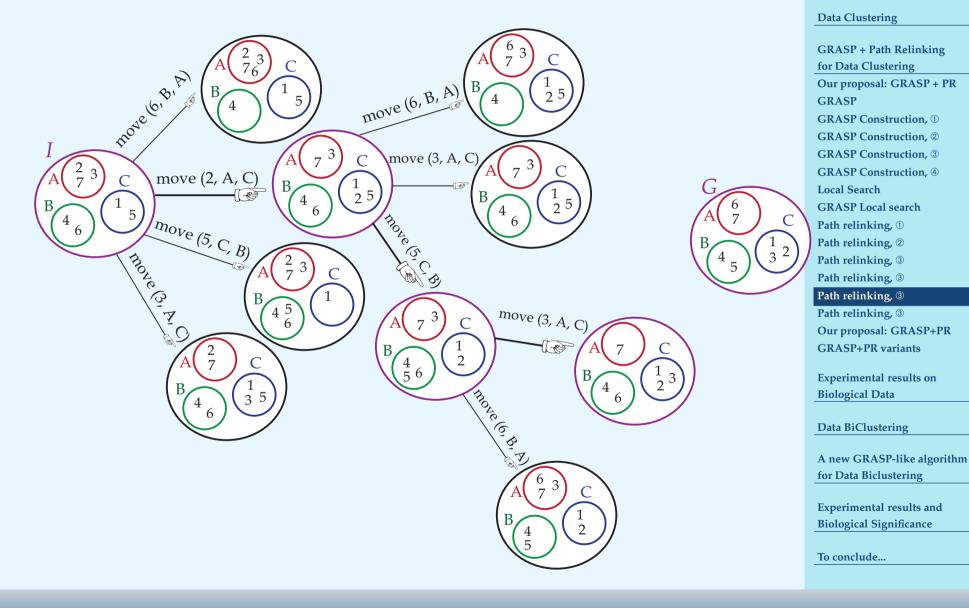
32

Path relinking for (DC):

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP Local search** Path relinking, ① Path relinking, 2 Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ **Our proposal: GRASP+PR GRASP+PR** variants Experimental results on **Biological Data Data BiClustering**

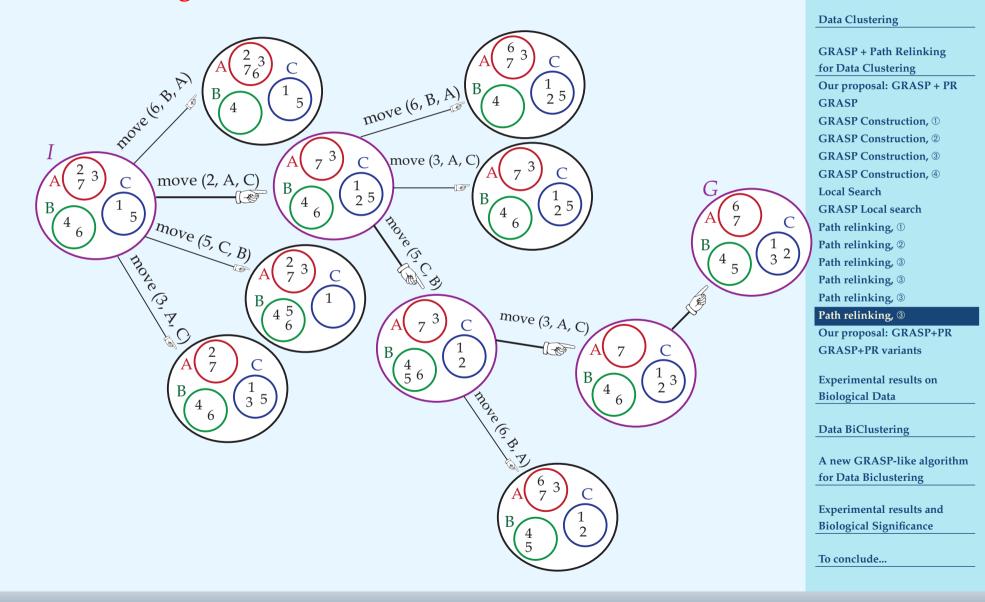

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola, festa@unina, it - Web: http://www.dma.unina.it/~fest

Path relinking for (DC):



Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~festa

Outline

Path relinking for (DC):

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

E-mail:paola.festa@unina.it-Web:http://www.dma.unina.it/~festa

Outline

Our proposal: GRASP+PR

At each GRASP iteration, we apply path relinking as intensification.

```
algorithm GRASP+PR(f(\cdot), g(\cdot), \mathcal{N}, \text{Seed})
   P := \emptyset:
1
2
    while (stopping criterion not satisfied) do
3
      S:=ConstructGreedyRandomizedSolution(Seed, g(\cdot));
      S:=LocalSearch(S, f(\cdot), \mathcal{N});
4
      if (P not full) then P := P \cup \{S\};
5
6
       else
         \hat{S} := \text{select}(P); \quad \hat{S} := \text{path-relinking}(S, \hat{S});
\overline{7}
        update(P,\hat{S});
8
      endif
9
10 endwhile;
11 S_{best} := select-best(P);
12 return(S_{best});
end GRASP+PR
```

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Our proposal: GRASP + PR
GRASP
GRASP Construction , ①
GRASP Construction, 2
GRASP Construction, 3
GRASP Construction, ④
Local Search
GRASP Local search
Path relinking, ①
Path relinking, ⁽²⁾
Path relinking, ③
Path relinking, ③
Path relinking, ③
Path relinking, ③ Path relinking, ③
0,
Path relinking, 3
Path relinking, ³ Our proposal: GRASP+PR GRASP+PR variants
Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants Experimental results on
Path relinking, ³ Our proposal: GRASP+PR GRASP+PR variants
Path relinking, ⁽³⁾ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data
Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants Experimental results on
Path relinking, ⁽³⁾ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data Data BiClustering
Path relinking, ⁽³⁾ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data
Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data Data BiClustering A new GRASP-like algorithm
Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data Data BiClustering A new GRASP-like algorithm
Path relinking, ③ Our proposal: GRASP+PR GRASP+PR variants Experimental results on Biological Data Data BiClustering A new GRASP-like algorithm for Data Biclustering

Our proposal: GRASP+PR

At each GRASP iteration, we apply path relinking as intensification.

algorithm GRASP+PR($f(\cdot), g(\cdot), \mathcal{N}, \text{Seed}$) $P := \emptyset$: 1 2 while (stopping criterion not satisfied) do 3 S:=ConstructGreedyRandomizedSolution(Seed, $q(\cdot)$); S:=LocalSearch($S, f(\cdot), \mathcal{N}$); 4 5 if (*P* not full) then $P := P \cup \{S\}$; 6 else $\hat{S} := \text{select}(P); \quad \hat{S} := \text{path-relinking}(S, \hat{S});$ 7 update(P,\hat{S}); 8 endif 9 endwhile; 10 11 $S_{best} := select-best(P);$ 12 return(S_{best}); end GRASP+PR

update(P, \hat{S}): $P := P \cup {\hat{S}}$, if \hat{S} better than the worst elite solution and sufficiently different from all elite solutions. Outline

GRASP

Local Search

Data Clustering

GRASP + Path Relinking for Data Clustering

Our proposal: GRASP + PR

GRASP Construction, ①

GRASP Construction, ⁽²⁾ GRASP Construction, ⁽³⁾

GRASP Construction, ④

GRASP Local search Path relinking, ①

Path relinking, ⁽²⁾

Path relinking, ③ Path relinking, ③

Path relinking, ③ Path relinking, ③

Our proposal: GRASP+PR GRASP+PR variants

Experimental results on

A new GRASP-like algorithm

Biological Data

Data BiClustering

for Data Biclustering

Experimental results and

Biological Significance

GRASP+PR variants

Several **different GRASP+PR variants** have been designed:

- $\overset{\text{\tiny{a}}}{=} a \text{ backward path relinking:} \\ \text{\tiny{worst}}(\mathcal{S}, \hat{\mathcal{S}}) \overset{\text{\tiny{path-relinking}}}{\longleftarrow} \text{\tiny{best}}(\mathcal{S}, \hat{\mathcal{S}})$
- $\stackrel{\text{\tiny{(3)}}}{=} a \text{ mixed relinking:} \\ \text{\tiny{(3)}} \text{\tiny{(3)}} \stackrel{\text{\tiny{(3)}}}{\Longrightarrow} \stackrel{\text{\tiny{(3)}}}{\longrightarrow} \stackrel{\text{\tiny{(3)}}}{\overline{\mathcal{S}}} \stackrel{\text{\tiny{(3)}}}{\xleftarrow{=}} \text{\tiny{(3)}} \text{\tiny{(3)}} \text{\tiny{(3)}} \text{\tiny{(3)}}$
- a randomized relinking: instead of selecting the best yet unselected move, randomly selects one from among a candidate list with the most promising moves in the path being investigated.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering Our proposal: GRASP + PR GRASP **GRASP Construction**, ① **GRASP Construction**, ⁽²⁾ **GRASP Construction**, ③ **GRASP Construction**, ④ Local Search **GRASP** Local search Path relinking, ① Path relinking, ⁽²⁾ Path relinking, ③ Path relinking, ③ Path relinking, ③ Path relinking, ③ Our proposal: GRASP+PR **GRASP+PR** variants

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Experimental results on Biological Data

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Tested algorithms Distance (dissimilarity) metrics, ① Distance (dissimilarity) metrics, ② Test environment Datasets, ① Datasets, ② Experimental Design, ① Experimental Design, ② Numerical results, ③ Numerical results, ③

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Tested algorithms

- **O** 3 known clustering algorithms:
 - K-means: deterministic, minimizes the dissimilarities between an object and the centroid of its cluster;
 - K-medians: deterministic, minimizes the dissimilarities between an object and the medoid of its cluster;
 - PAM: deterministic, 2 stages: ① BUILD: defines a set of initial *medoids*; ② SWAP: tunes the medoids by swapping objects between the clusters;
- **O GRASP-L**: Nascimento et al, 2010;
- **O GRASP**: our implementation of GRASP-L;
- O GRASP+PR variants:
 - ♦ GRASP-PRf: GRASP + PR forward;
 - ♦ GRASP-PRb: GRASP + PR backward;
 - ♦ GRASP-PRm: GRASP + PR mixed;
 - ♦ GRASP-PRrnd: GRASP + PR greedy randomized.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms

Distance (dissimilarity) metrics, ① Distance (dissimilarity) metrics, ② Test environment Datasets, ① Datasets, ② Experimental Design, ① Experimental Design, ② Numerical results, ① Numerical results, ③

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Distance (dissimilarity) metrics, ①

For all algorithms, we used the **same distance (dissimilarity) metrics** between 2 objects using their attribute values:

• Euclidean:
$$d_{ij} = \sqrt{\sum_{k=1}^{L} (a_{ik} - a_{jk})^2};$$

• City-block or Manhattan (city road grid):
$$d_{ij} = \sum_{k=1}^{2} |a_{ik} - a_{jk}|$$
;

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on

Biological Data

Tested algorithms Distance (dissimilarity)

metrics, ①

Distance (dissimilarity) metrics, ⁽²⁾ Test environment Datasets, ⁽¹⁾ Datasets, ⁽²⁾ Experimental Design, ⁽¹⁾

Experimental Design, ⁽²⁾ Numerical results, ⁽¹⁾ Numerical results, ⁽²⁾

Numerical results, 3

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Distance (dissimilarity) metrics, ①

For all algorithms, we used the **same distance (dissimilarity) metrics** between 2 objects using their attribute values:

O Euclidean:
$$d_{ij} = \sqrt{\sum_{k=1}^{L} (a_{ik} - a_{jk})^2};$$

• City-block or Manhattan (city road grid): $d_{ij} = \sum_{k=1}^{-1} |a_{ik} - a_{jk}|$;

○ Cosine or uncentered correlation: $D_{ij} \in [-1, 1]$

$$d_{ij} = 1 - |D_{ij}|, \quad D_{ij} = \frac{\sum_{k=1}^{L} a_{ik} \cdot a_{jk}}{\sum_{k=1}^{L} a_{ik}^2 \sum_{k=1}^{L} a_{jk}^2};$$

Note:

 $\square D_{ij} = 1 \Longrightarrow \text{angle } 0^{\circ};$ $\square D_{ij} = -1 \Longrightarrow \text{angle } 90^{\circ}.$

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on

Biological Data

Tested algorithms Distance (dissimilarity)

metrics, ① Distance (dissimilarity) metrics, ②

Test environment Datasets, ①

Datasets, ² Experimental Design, ^①

Experimental Design, ⁽²⁾ Numerical results, ⁽¹⁾ Numerical results, ⁽²⁾

Numerical results, 3

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Distance (dissimilarity) metrics, ⁽²⁾

For all algorithms, we used the **same distance (dissimilarity) metrics** between 2 objects using their attribute values:

O Euclidean:
$$d_{ij} = \sqrt{\sum_{k=1}^{L} (a_{ik} - a_{jk})^2};$$

- City-block or Manhattan (city road grid): $d_{ij} = \sum_{k=1}^{L} |a_{ik} a_{jk}|$;
- Cosine or uncentered correlation: $D_{ij} \in [-1, 1]$;
- **O** Pearson's correlation: $d_{ij} = 1 |r_{ij}|$; $r_{ij} \in [-1, 1]$

$$_{ij} = \frac{L \cdot \sum_{k=1}^{L} a_{ik} \cdot a_{jk} - \sum_{k=1}^{L} a_{ik} \cdot a_{jk}}{\sqrt{L \cdot \sum_{k=1}^{L} a_{ik}^2 - (\sum_{k=1}^{L} a_{jk})^2 \sqrt{L \cdot \sum_{k=1}^{L} a_{jk}^2 - (\sum_{k=1}^{L} a_{jk})^2 \sqrt{L \cdot \sum_{k=1}^{L} a_{jk}} - (\sum_{k=1}^{L} a_{jk}$$

Biological Significance

To conclude...

Outline

Note:

r

□ $r_{ij} = 1 \implies$ perfect association; □ $r_{ij} = -1 \implies$ perfect negative linear relationship.

Test environment

- Dell computer with Core 2 Duo 2.1 GHz T8100 Intel processor and 3 Gb of memory;
- Windows XP Professional version 5.1 2002 SP3 x86;
- Java language, Javac compiler ver.1.6.0.20;
- Random-number generator: Mersenne Twister algorithm (Matsumoto and Nishimura, 1998) from the COLT2 library.

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on

Biological Data

Tested algorithms Distance (dissimilarity) metrics, ① Distance (dissimilarity) metrics, ②

Test environment

Datasets, ①

Datasets, 2

Experimental Design, ① Experimental Design, ② Numerical results, ① Numerical results, ② Numerical results, ③

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Datasets, ①

Datasets:

- ① fold protein classification: Protein [Ding et al, 2001];
- ② prediction of protein localization sites: Yeast [Nakai et al, 1991];
- ③ 7 cancer diagnosis data sets:
 - ✓ Breast [Bennett et al, 1992];
 - ✓ Novartis [Su et al, 2002];
 - ✓ BreastA [Veer et al, 2002];
 - ✓ BreastB [West et al, 2001];
 - ✓ DLBCLA [Monti et al, 2005];
 - ✓ DLBCLB [Rosenwald et al, 2002];
 - ✓ MultiA [Su et al, 2002];
- ④ a benchmark dataset: Iris [Fisher et al, 1936].

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms Distance (dissimilarity) metrics. ① **Distance (dissimilarity)** metrics, ² Test environment Datasets. ① Datasets, 2 **Experimental Design**, ① **Experimental Design**, ⁽²⁾ Numerical results, ① Numerical results, 2 Numerical results, ③ **Data BiClustering** A new GRASP-like algorithm for Data Biclustering Experimental results and

To conclude...

Biological Significance

Datasets, 2

Characteristics of datasets used in the experiments.

Data SetN		# Structures (<i>M</i>)	# Attributes	
Protein	698	2 (4,27)	125	
Yeast	1484	1 (10)	8	
Breast	699	2 (2,8)	9	
Novartis	103	1 (4)	1000	
BreastA	98	1 (3)	1213	
BreastB	49	2 (2,4)	1213	
DLBCLA	141	1 (3)	661	
DLBCLB	180	1 (3)	661	
MultiA	103	1 (4)	5565	
Iris	140	1 (3)	4	

Outline

Data Clustering

GRASP + Path Relinking
for Data Clustering
Experimental results on
Biological Data
Tested algorithms
Distance (dissimilarity)
metrics, ①
Distance (dissimilarity)
metrics, ⁽²⁾
Test environment
Datasets, ①
Datasets, 2
Experimental Design , ①
Experimental Design, 2
Numerical results, ①
Numerical results, ²
Numerical results, 3
Data BiClustering
A new GRASP-like algorithm
for Data Biclustering
Experimental results and
Biological Significance
To conclude

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

Experimental Design, ①

Tuning phase – values of the parameters for GRASP+PR heuristics used for each dataset:

Pool size (PS), elements in pool before start PR (EPBS), symmetrical difference (SD), and Iterations without Improvement (IWI).

	Iris	Novartis	BrstA	BrstB1	BrstB2	DL	BCLA
PS	3	5	4	3	3		5
EPBS	1	3	1	1	1		2
SD	4	70	4	30	30	-	100
IWI	15	15	15	15	15		15
	-						
	DLBCL	B MultA	Brst1	Brst2	Prt1	Prt2	Yeast
PS	5	5	3	6	5	5	7
EPBS	2	2	1	3	2	3	3
SD	100	70	4	550	450	450	1200
IWI	15	15	15	15	15	15	5

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on
Biological Data
Tested algorithms
Distance (dissimilarity)
metrics, ①
Distance (dissimilarity)
metrics, ^②
Test environment
Datasets, ①
Datasets, ^②
Experimental Design, ①
Experimental Design, 2
Numerical results, ①
Numerical results, ²
Numerical results, 3
Data BiClustering
A new GRASP-like algorithm
for Data Biclustering
Even on the second to and

Experimental results and Biological Significance

Experimental Design, 2

Measure to evaluate the results:

 CRand – Corrected (adjusted) Rand index [Hubert and Arabie, 1985].

To compare 2 partitions *P* and *Q* on the same set *X*, compute

$$\operatorname{CRand}(P,Q) = \frac{r - \operatorname{Exp}(r)}{\operatorname{Max}(r) - \operatorname{Exp}(r)},$$

where

- X r is the number of common joined pairs in P and Q;
- \checkmark Exp(*r*) is the expected value of *r*;
- \checkmark Max(r) is the maximum value of r.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms Distance (dissimilarity) metrics. ① **Distance (dissimilarity)** metrics, ^② Test environment Datasets. ① Datasets, 2 **Experimental Design**, ① Experimental Design, 2 Numerical results, ① Numerical results, 2 Numerical results, ③ **Data BiClustering** A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Numerical results, ①

Euclidean distance

Out of 10 datasets

- ✓ GRASP-PRrnd found best results for 9;
- ✓ GRASP-PRb found best results for 8;
- ✓ GRASP-PRm found best results for 8;
- ✓ GRASP-PRf found best results for 6;
- ✓ GRASP found best results for 6;
- ✓ GRASP-L for 2;
- ✓ K-medians found the best solution for 2;
- ✓ K-means found the best solution for only 1.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms Distance (dissimilarity) metrics. ① **Distance (dissimilarity)** metrics, ^② Test environment Datasets. ① Datasets, 2 **Experimental Design**, ① **Experimental Design**, ⁽²⁾ Numerical results, ① Numerical results, ⁽²⁾ Numerical results, ③ **Data BiClustering**

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Numerical results, 2

City-block or Manhattan distance

Out of 10 datasets

- ✓ GRASP-PRrnd found best results for 8;
- ✓ GRASP-PRb found best results for 8;
- ✓ GRASP-PRm found best results for 8;
- ✓ GRASP-PRf found best results for 7;
- ✓ GRASP found best results for 6;
- ✓ GRASP-L for 2;
- ✓ K-medians found the best solution for 2;
- ✓ K-means found the best solution for only 1.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms Distance (dissimilarity) metrics, ① Distance (dissimilarity) metrics, ② Test environment Datasets, ① Datasets, ① Datasets, ② Experimental Design, ① Experimental Design, ② Numerical results, ③ Numerical results, ③

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Numerical results, 3

Cosine distance

Out of 10 datasets

- ✓ GRASP-PRrnd found best results for 6;
- ✓ GRASP-PRb found best results for 6;
- ✓ GRASP-PRf found best results for 6;
- ✓ GRASP-PRm found best results for 5;
- ✓ GRASP found best results for 4;
- ✓ GRASP-L for 2;
- ✓ K-medians found the best solution for 4;
- ✓ K-means found the best solution for only 1.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data Tested algorithms Distance (dissimilarity) metrics, ① Distance (dissimilarity) metrics, ② Test environment Datasets, ① Datasets, ② Experimental Design, ① Experimental Design, ② Numerical results, ① Numerical results, ③

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Data BiClustering

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

Collaborations Description and Applications Problem Formulation, ① Problem Formulation, ② Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, ⑤ State-of-the-art, ⑥

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 - Napoli, September 25-27, 2012 - p. 51/81

Collaborations

Material on Data Biclustering presented in this seminar is based on joint work with:

✔ Angelo Facchiano

Institute of Food Science – CNR, Italy

✓ Francesco Musacchia

Dept. of Mathematics and Applications "R. Caccioppoli" University of Napoli FEDERICO II

Anna Marabotti and Luciano Milanesi

Institute of Biomedical Technologies – CNR, Italy

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

Collaborations

Description and Applications Problem Formulation, ① Problem Formulation, ② Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, ⑤ State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Description and Applications

Input: the input data comes from two domain sets and some relation over the Cartesian product of these two sets is given.

Task: to partition each of the sets s.t.

- ✓ the subsets from one domain exhibit similar behavior across the subsets of the other domain, or, in other words,
- ✓ simultaneously, data clustering and feature selection.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

Collaborations

Description and Applications

Problem Formulation, ① **Problem Formulation**, ⁽²⁾ **Graph representation** State-of-the-art, ① State-of-the-art. 2 State-of-the-art, ③ State-of-the-art. ④ State-of-the-art, 5 State-of-the-art, 6 State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and **Biological Significance**

Description and Applications

Input: the input data comes from two domain sets and some relation over the Cartesian product of these two sets is given.

Task: to partition each of the sets s.t.

- the subsets from one domain exhibit similar behavior across the subsets of the other domain, or, in other words,
- ✓ simultaneously, data clustering and feature selection.

As Clustering, applications include

- ⇔ galaxy formation;
- ➡ image segmentation;
- ⊾ ...;
- ➡ biological data.

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering Collaborations Description and Applications Problem Formulation, ① Problem Formulation, ② Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ④ State-of-the-art, ⑤

State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ①

We are given a gene expression matrix $\mathcal{A} \in \mathbb{R}^{n \times m}$

[-	Condition 1	•••	Condition <i>j</i>		Condition m]
	Gene 1	a_{11}	•••	a_{1j}	•••	a_{1m}	
1 _	:					•	
\mathcal{A} –	Gene i	a_{i1}		a_{ij}		a_{im}	-
	· ·						
	Gene n	a_{n1}		a_{nj}		a_{nm}]

where a_{ij} represents the expression level of gene *i* under condition *j*.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

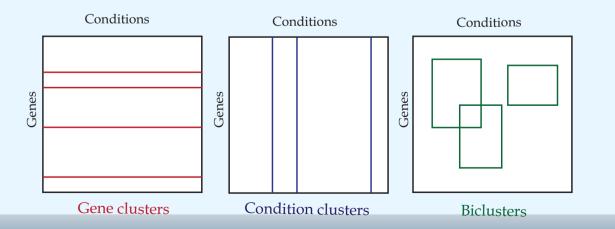
Data BiClustering Collaborations Description and Applications **Problem Formulation**, ^① Problem Formulation, ^② Graph representation State-of-the-art, ^① State-of-the-art, ^② State-of-the-art, ^③ State-of-the-art, ^⑤ State-of-the-art, ^⑥ State-of-the-art, [®] A new GRASP-like algorithm

Experimental results and

for Data Biclustering

Biological Significance

Problem Formulation, ①


We are given a gene expression matrix $\mathcal{A} \in \mathbb{R}^{n \times m}$

	- 	Condition 1	•••	Condition <i>j</i>	•••	Condition m
	Gene 1	a_{11}	•••	a_{1j}	•••	a_{1m}
4	· ·	•	•	•	•	•
$\mathcal{A} =$	Gene <i>i</i>	a_{i1}	• • •	a_{ij}	• • •	a _{im}
	Gene n	a_{n1}	•••	a_{nj}	•••	anm

where a_{ij} represents the expression level of gene *i* under condition *j*.

Goal of biclustering:

to identify subgroups of genes and subgroups of conditions, by performing simultaneous clustering of both *n* rows and *m* columns.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering Collaborations Description and Applications **Problem Formulation**, Graph representation State-of-the-art, State-of-the-art, State-of-the-art, State-of-the-art, State-of-the-art, State-of-the-art, State-of-the-art, State-of-the-art, A new GRASP-like algorithm

for Data Biclustering

Experimental results and Biological Significance

To conclude...

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 54/81

Problem Formulation, ⁽²⁾

We considered the **general case of a data matrix** A = (X, Y), where

- $X = \{x_1, \ldots, x_n\}$ is the set of rows;
- $Y = \{y_1, \ldots, y_m\}$ is the set of columns, and
- The element a_{ij} , $i \in X$, $j \in Y$, corresponds to a value representing the relation between row i and column j.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

Collaborations Description and Applications Problem Formulation, ①

Problem Formulation, ⁽²⁾

Graph representation

State-of-the-art, ①

State-of-the-art, ⁽²⁾ State-of-the-art, ⁽³⁾

State-of-the-art, ④

State-of-the-art, 5

State-of-the-art, 6

State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ⁽²⁾

We considered the **general case of a data matrix** A = (X, Y), where

- $X = \{x_1, \ldots, x_n\}$ is the set of rows;
- $Y = \{y_1, \ldots, y_m\}$ is the set of columns, and
- The element a_{ij} , $i \in X$, $j \in Y$, corresponds to a value representing the relation between row i and column j.

Definitions:

→ a *cluster of rows* A_{IY} is a k × m submatrix of A, where
 I = {x_{i1},..., x_{ik}} ⊆ X, i.e. it is a subset of k ≤ n rows defined over the set of all columns Y;

Outline

Data Clustering

for Data Clustering

Biological Data

Data BiClustering Collaborations

Graph representation State-of-the-art, ①

State-of-the-art, ⁽²⁾ State-of-the-art, ⁽³⁾

State-of-the-art, ④ State-of-the-art, ⑤ State-of-the-art, ⑥ State-of-the-art, ⑦

GRASP + Path Relinking

Experimental results on

Description and Applications Problem Formulation, (1) Problem Formulation, (2)

A new GRASP-like algorithm

for Data Biclustering

To conclude...

Experimental results and Biological Significance

Problem Formulation, ⁽²⁾

We considered the **general case of a data matrix** A = (X, Y), where

- $X = \{x_1, \ldots, x_n\}$ is the set of rows;
- $Y = \{y_1, \ldots, y_m\}$ is the set of columns, and
- The element a_{ij} , $i \in X$, $j \in Y$, corresponds to a value representing the relation between row i and column j.

Definitions:

- → a *cluster of rows* A_{IY} is a k × m submatrix of A, where
 I = {x_{i1},..., x_{ik}} ⊆ X, i.e. it is a subset of k ≤ n rows defined over the set of all columns Y;
- → a *cluster of columns* \mathcal{A}_{XJ} is a $n \times s$ submatrix of \mathcal{A} , where $J = \{y_{j_1}, \dots, y_{j_s}\} \subseteq Y$, i.e. it is a subset of $s \leq m$ columns defined over the set of all rows X;

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

Collaborations Description and Applications Problem Formulation, ①

Problem Formulation, @

ioblem ronnulation,

Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ⑤ State-of-the-art, ⑥ State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Problem Formulation, ⁽²⁾

We considered the **general case of a data matrix** A = (X, Y), where

- $X = \{x_1, \ldots, x_n\}$ is the set of rows;
- $Y = \{y_1, \ldots, y_m\}$ is the set of columns, and
- The element a_{ij} , $i \in X$, $j \in Y$, corresponds to a value representing the relation between row i and column j.

Definitions:

- → a *cluster of rows* A_{IY} is a k × m submatrix of A, where
 I = {x_{i1},..., x_{ik}} ⊆ X, i.e. it is a subset of k ≤ n rows defined over the set of all columns Y;
- → a *cluster of columns* A_{XJ} is a $n \times s$ submatrix of A, where $J = \{y_{j_1}, \dots, y_{j_s}\} \subseteq Y$, i.e. it is a subset of $s \leq m$ columns defined over the set of all rows X;
- → a *bicluster* $\mathcal{B} = \mathcal{A}_{IJ}$ is a $k \times s$ submatrix of \mathcal{A} , where $I = \{x_{i_1}, \dots, x_{i_k}\} \subseteq X$ and $J = \{y_{j_1}, \dots, y_{j_s}\} \subseteq Y$, i.e. it is a subset of $k \leq n$ rows defined over a subset of $s \leq m$ columns or, equivalently, **a subset of** $s \leq m$ **columns defined over a subset of** $k \leq n$ **rows**.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering Collaborations Description and Applications

Problem Formulation, ①

Problem Formulation, ⁽²⁾

Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ⑤ State-of-the-art, ⑥ State-of-the-art, ⑦

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Graph representation

Data matrices can be naturally represented via a complete weighted bipartite graph G = (V, E, w):

- $V = X \cup Y$ (clearly, $X \cap Y = \emptyset$);
- $w : E \mapsto \mathbb{R}$ s.t. $\forall [x_i, y_j] \in E, w_{ij} = a_{ij} \in \mathbb{R}.$

Outline

Data Clustering

Biological Data

Collaborations

Data BiClustering

GRASP + Path Relinking for Data Clustering

Experimental results on

Description and Applications Problem Formulation, ① Problem Formulation, ② Graph representation State-of-the-art, ① State-of-the-art, ② State-of-the-art, ③ State-of-the-art, ⑤ State-of-the-art, ⑥ State-of-the-art, ⑦

A new GRASP-like algorithm

for Data Biclustering

To conclude...

Experimental results and Biological Significance

Graph representation

Data matrices can be naturally represented via a complete weighted bipartite graph G = (V, E, w):

$$T = X \cup Y$$
 (clearly, $X \cap Y = \emptyset$);

$$E = \{ [x_i, y_j] \mid x_i \in X, y_j \in Y \};$$

Bad new: even in its **simplest form where** $\mathcal{A} \in \{0, 1\}^{n \times m}$, the problem of finding a maximum size bicluster in a data matrix \mathcal{A} is **NP**-complete.

In fact, it reduces to finding the maximum edge biclique in the corresponding bipartite graph G. [Peeters, 2003]

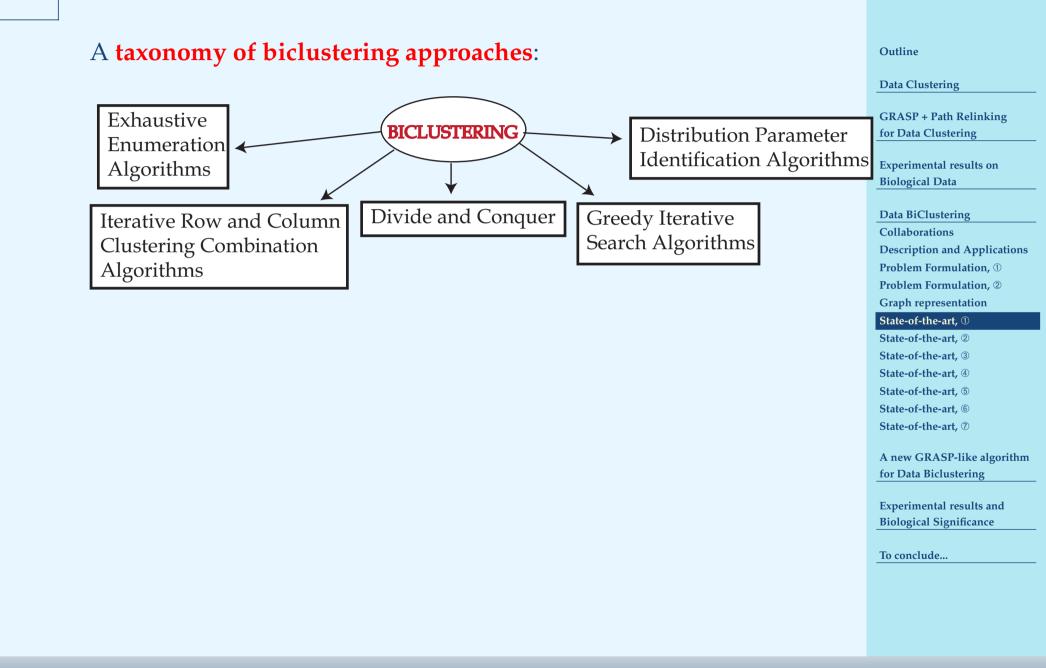
Outline

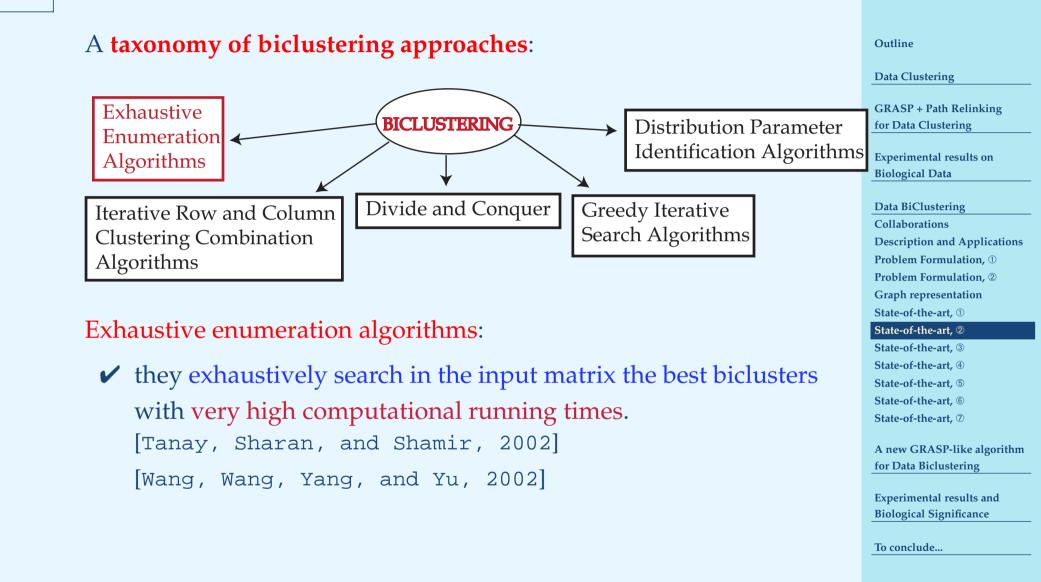
Data Clustering

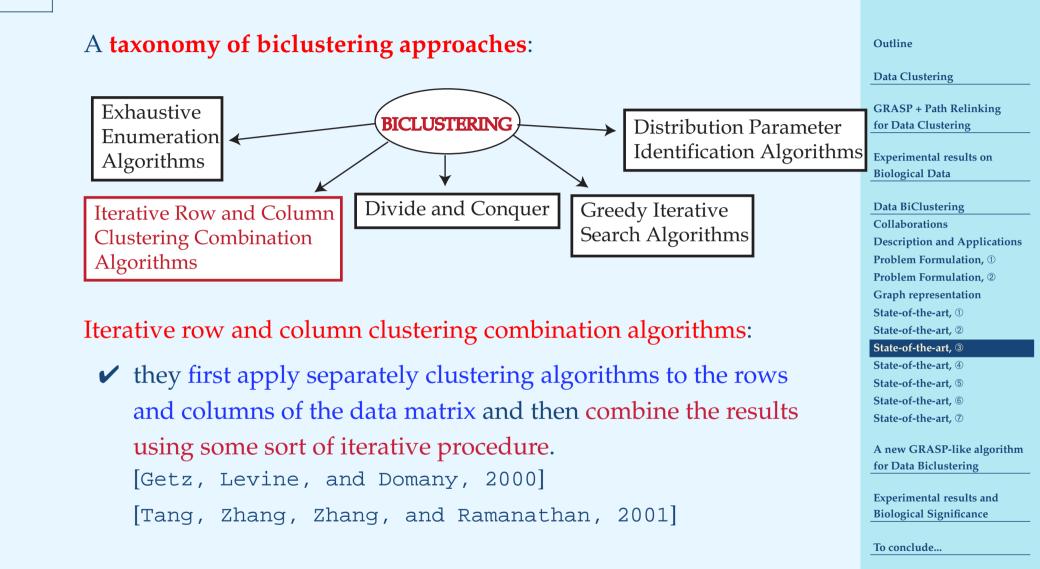
GRASP + Path Relinking for Data Clustering

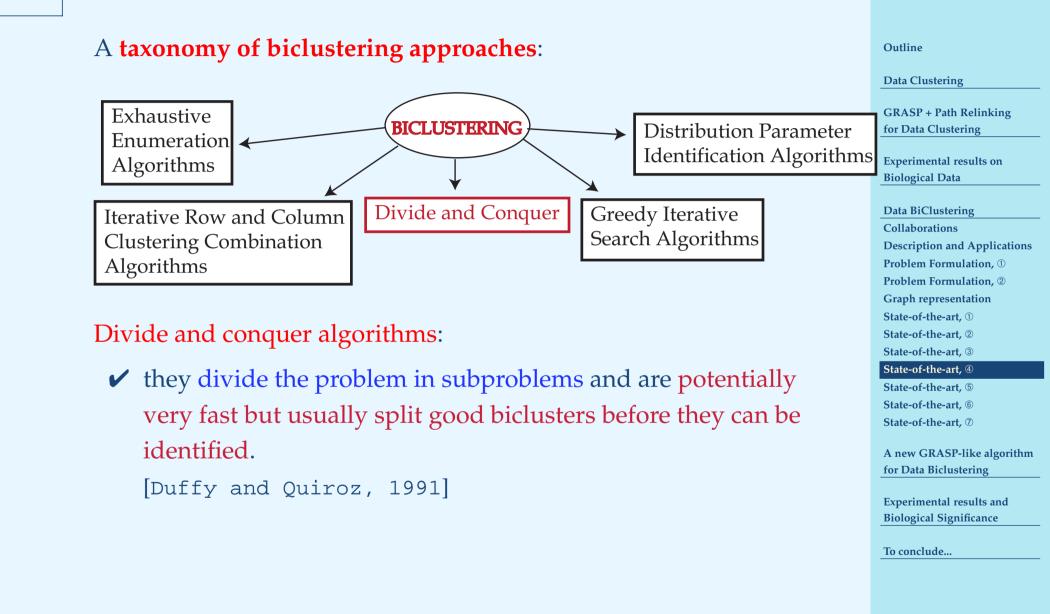
Experimental results on Biological Data

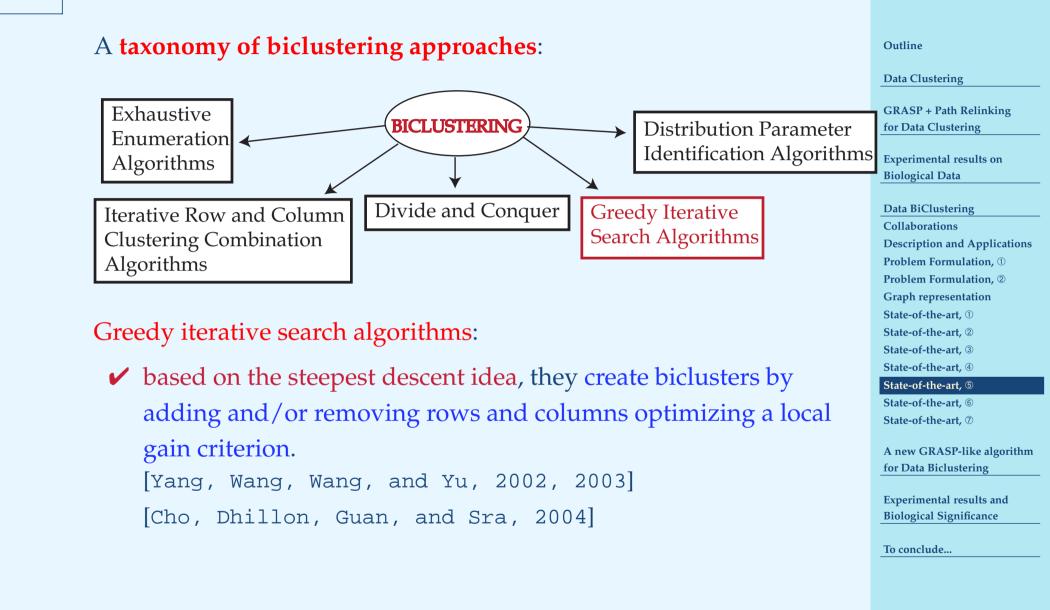
Data BiClustering

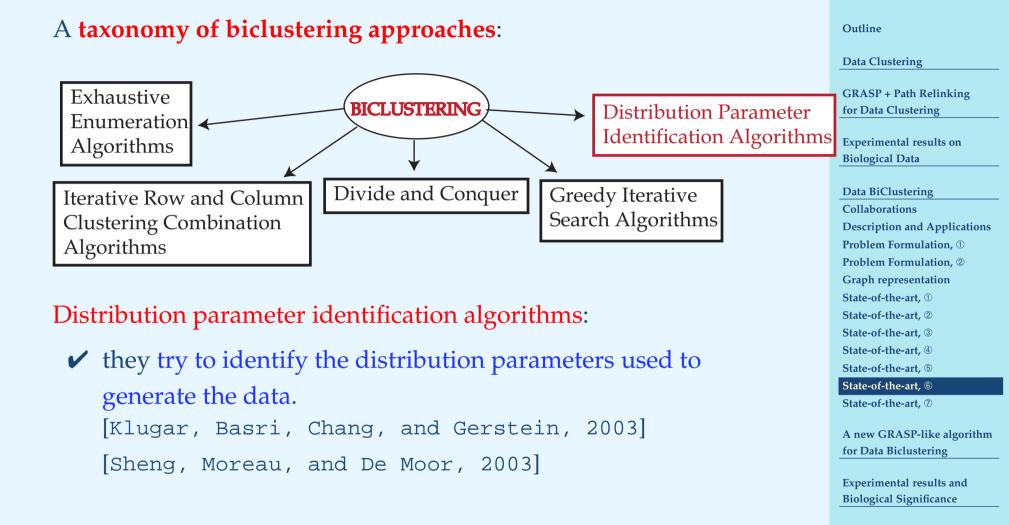

Collaborations Description and Applications Problem Formulation, ^① Problem Formulation, ^②

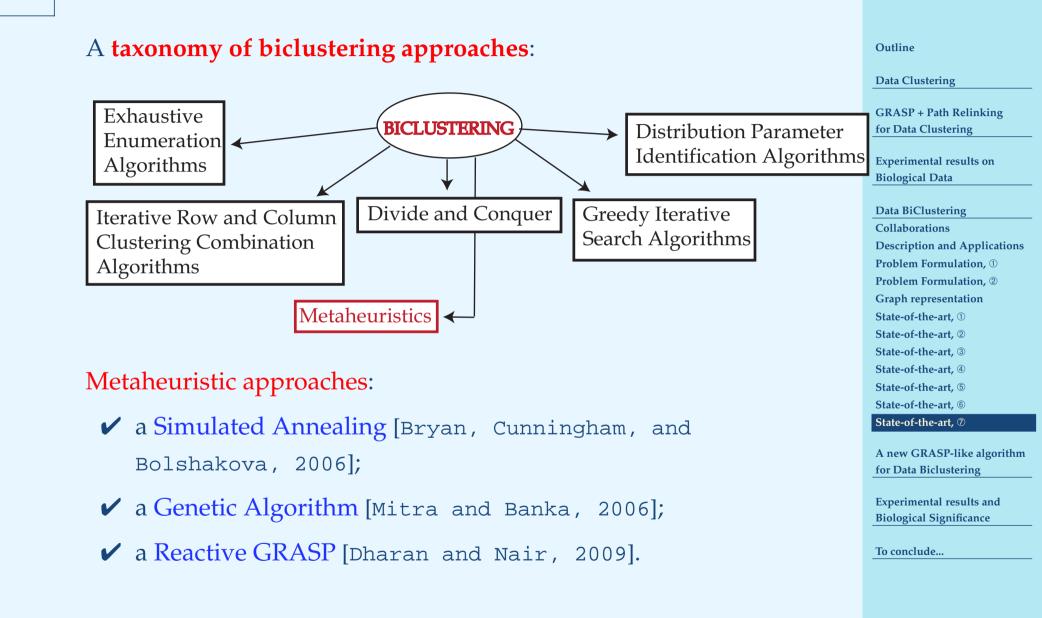

Graph representation


State-of-the-art, ① State-of-the-art, ② State-of-the-art, ④ State-of-the-art, ⑤ State-of-the-art, ⑥ State-of-the-art, ⑦


A new GRASP-like algorithm for Data Biclustering


Experimental results and Biological Significance





A new GRASP-like algorithm for Data Biclustering

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fes

B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 64/81

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

A solution and objective function

Mean squared residue score

Our proposal, ①

Our proposal, 2

Our proposal, 3

Our proposal, ④

Small example, ①

Small example, 2

Small example, ③

Experimental results and Biological Significance

A solution and objective function

Given a gene expression matrix $\mathcal{A} \in \mathbb{R}^{n \times m}$ s.t. a_{ij} represents the expression level of gene *i* under condition *j*,

a solution is a set of biclusters

$$\{\mathcal{B}_1 = (I_1, J_1), \dots, \mathcal{B}_k = (I_k, J_k)\}$$

s.t. each bicluster \mathcal{B}_q , q = 1, ..., k, satisfies some specific characteristics of "homogeneity".

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③ Experimental results and Biological Significance

A solution and objective function

Given a gene expression matrix $\mathcal{A} \in \mathbb{R}^{n \times m}$ s.t. a_{ij} represents the expression level of gene *i* under condition *j*,

a solution is a set of biclusters

$$\{\mathcal{B}_1 = (I_1, J_1), \dots, \mathcal{B}_k = (I_k, J_k)\}$$

s.t. each bicluster \mathcal{B}_q , q = 1, ..., k, satisfies some specific characteristics of "homogeneity".

In our approach, we wanted

- \bigcirc to analyze directly the numeric values in the data matrix \mathcal{A} and
- try to find subsets of rows and subsets of columns with similar behaviors;

Outline	0	u	tl	i	n	e
---------	---	---	----	---	---	---

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③ Experimental results and Biological Significance

A solution and objective function

Given a gene expression matrix $\mathcal{A} \in \mathbb{R}^{n \times m}$ s.t. a_{ij} represents the expression level of gene *i* under condition *j*,

a solution is a set of biclusters

$$\{\mathcal{B}_1 = (I_1, J_1), \dots, \mathcal{B}_k = (I_k, J_k)\}$$

s.t. each bicluster \mathcal{B}_q , q = 1, ..., k, satisfies some specific characteristics of "homogeneity".

In our approach, we wanted

- \bigcirc to analyze directly the numeric values in the data matrix \mathcal{A} and
- try to find subsets of rows and subsets of columns with similar behaviors;
- according to [Cheng and Church, 2000], we have used as a measure of the coherence of the rows and columns in the bicluster the so called *mean squared residue score* to be minimized.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③ Experimental results and Biological Significance

Given a data matrix $\mathcal{A} = (X, Y)$, where

 $a_{ij}, (i \in X, j \in Y)$, represents the relation between row *i* and column *j*,

given a bicluster $\mathcal{B} = (I, J), I \subseteq X, J \subseteq Y$, and given

→ the mean of the *i*th row in \mathcal{B} : $a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{ij}$;

Outline

Data Clustering

GRASP + Path Relink	cing
for Data Clustering	

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③ Experimental results and

Biological Significance

Given a data matrix $\mathcal{A} = (X, Y)$, where

 $a_{ij}, (i \in X, j \in Y)$, represents the relation between row *i* and column *j*,

given a bicluster $\mathcal{B} = (I, J), I \subseteq X, J \subseteq Y$, and given

- → the mean of the *i*th row in \mathcal{B} : $a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{ij};$
- → the mean of the *j*th column in \mathcal{B} : $a_{Ij} = \frac{1}{|I|} \sum_{i \in I} a_{ij};$

Data Clustering
GRASP + Path Relinking
for Data Clustering
Experimental results on
Biological Data
Data BiClustering
A new GRASP-like algorithm
for Data Biclustering A solution and objective
function
Mean squared residue score
Our proposal, ①
Our proposal, ⁽²⁾
Our proposal, ³
Our proposal, ④
Small example, ①
Small example, ⁽²⁾
Small example, 3
1 '
Experimental results and
Biological Significance
To conclude

Outline

Given a data matrix $\mathcal{A} = (X, Y)$, where

 $a_{ij}, (i \in X, j \in Y)$, represents the relation between row *i* and column *j*,

given a bicluster $\mathcal{B} = (I, J), I \subseteq X, J \subseteq Y$, and given

- → the mean of the *i*th row in \mathcal{B} : $a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{ij}$;
- → the mean of the *j*th column in \mathcal{B} : $a_{Ij} = \frac{1}{|I|} \sum_{i \in I} a_{ij};$
- → the mean of all the elements in B:

$$a_{IJ} = \frac{1}{|I| \cdot |J|} \sum_{i \in I, j \in J} a_{ij}; \quad a_{IJ} = \frac{1}{|I|} \sum_{i \in I} a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{Ij};$$

Data Clustering

GR	ASP	+ Path	Relinking
for	Data	Cluste	ering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm
for Data Biclustering
A solution and objective
function
Mean squared residue score
Our proposal, ①
Our proposal , ^②
Our proposal, ³
Our proposal, ④
Small example, ①
Small example, ⁽²⁾
Small example, ³
Experimental results and
Biological Significance
To conclude

Given a data matrix $\mathcal{A} = (X, Y)$, where

 $a_{ij}, (i \in X, j \in Y)$, represents the relation between row *i* and column *j*,

given a bicluster $\mathcal{B} = (I, J), I \subseteq X, J \subseteq Y$, and given

- → the mean of the *i*th row in \mathcal{B} : $a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{ij};$
- → the mean of the j^{th} column in \mathcal{B} : $a_{Ij} = \frac{1}{|I|} \sum_{i \in I} a_{ij};$
- → the mean of all the elements in B:

$$a_{IJ} = \frac{1}{|I| \cdot |J|} \sum_{i \in I, j \in J} a_{ij}; \quad a_{IJ} = \frac{1}{|I|} \sum_{i \in I} a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{Ij};$$

→ the *residue* of element a_{ij}, i.e. the difference between the actual value of a_{ij} and its expected value predicted from the corresponding row mean, column mean, and bicluster mean:

$$r(a_{ij}) = a_{ij} - a_{iJ} - a_{Ij} + a_{IJ}; \quad a_{ij} = r(a_{ij}) + a_{iJ} + a_{Ij} - a_{IJ};$$

Outline **Data Clustering GRASP** + Path Relinking for Data Clustering **Experimental results on Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, 2 Our proposal, ③ Our proposal, ④ Small example, ① Small example, 2 Small example, ③ Experimental results and **Biological Significance** To conclude...

Given a data matrix $\mathcal{A} = (X, Y)$, where

 $a_{ij}, (i \in X, j \in Y)$, represents the relation between row *i* and column *j*,

given a bicluster $\mathcal{B} = (I, J), I \subseteq X, J \subseteq Y$, and given

- → the mean of the *i*th row in \mathcal{B} : $a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{ij};$
- → the mean of the j^{th} column in \mathcal{B} : $a_{Ij} = \frac{1}{|I|} \sum_{i \in I} a_{ij};$
- → the **mean of all the elements in** B:

$$a_{IJ} = \frac{1}{|I| \cdot |J|} \sum_{i \in I, j \in J} a_{ij}; \quad a_{IJ} = \frac{1}{|I|} \sum_{i \in I} a_{iJ} = \frac{1}{|J|} \sum_{j \in J} a_{Ij};$$

→ the *residue* of element a_{ij}, i.e. the difference between the actual value of a_{ij} and its expected value predicted from the corresponding row mean, column mean, and bicluster mean:

$$r(a_{ij}) = a_{ij} - a_{iJ} - a_{Ij} + a_{IJ}; \quad a_{ij} = r(a_{ij}) + a_{iJ} + a_{Ij} - a_{IJ};$$

the *mean squared residue* $H(\mathcal{B})$ is the sum of the squared residues:

$$H(\mathcal{B}) = \frac{1}{|I| \cdot |J|} \sum_{i \in I, j \in J} r(a_{ij})^2.$$
 [To be minimized.]

Outline

Data Clustering

Biological Data

Data BiClustering

for Data Biclustering A solution and objective

function

Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ②

Small example, ③

To conclude...

Experimental results and

Biological Significance

GRASP + Path Relinking for Data Clustering

Experimental results on

A new GRASP-like algorithm

Mean squared residue score

A new Reactive GRASP-like algorithm with a learning mechanism: at each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.

Data Clustering GRASP + Path Relinking for Data Clustering Experimental results on **Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score **Our proposal**, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, 2 Small example, ③ Experimental results and **Biological Significance** To conclude...

Outline

A new Reactive GRASP-like algorithm with a learning mechanism: at	Outline
each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.	Data Clustering
algorithm GRASP-like-bicluster(\mathcal{A} ,MaxNoImpr,MaxDist, δ) 1 $\Delta := \{\alpha_1, \dots, \alpha_\ell\}; /* \alpha_i \in [0, 1], i = 1, \dots, \ell^*/$ 2 for $i = 1$ to ℓ do 3 $p_{\alpha_i} := \frac{1}{\ell};$ 4 endfor 5 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\} := filtered-Kmeans(\mathcal{A}); /* H(\mathcal{B}_q) \le \delta, q = 1, \dots, k^*/$ 6 for $q = 1$ to k do 7 $\hat{\mathcal{B}}_q := grasp(\mathcal{B}_q, \Delta, \mathcal{A}, MaxNoImpr, MaxDist);$ 8 endfor 9 return ($\hat{\mathcal{B}} = \{\hat{\mathcal{B}}_1, \dots, \hat{\mathcal{B}}_k\}$);	Data ClusteringGRASP + Path Relinking for Data ClusteringExperimental results on Biological DataData BiclusteringData BiclusteringA new GRASP-like algorithm for Data BiclusteringA solution and objective functionMean squared residue scoreOur proposal, ①Our proposal, ②Our proposal, ③Our proposal, ④Small example, ③
$\mathbf{A} = \mathbf{b} + \mathbf{c} = \mathbf{c} + $	Experimental results and Biological Significance
end	Experimental results and
At the first GRASP it.: $p_{\alpha_i} = \frac{1}{\ell}, i = 1, \dots, \ell$.	To conclude

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II

E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~festa

A new Reactive GRASP-like algorithm with a learning mechanism: at	Outline
each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.	Data Clustering
algorithm GRASP-like-bicluster(\mathcal{A} ,MaxNoImpr,MaxDist, δ)	GRASP + Path Relinking for Data Clustering
1 $\Delta := \{ \alpha_1, \dots, \alpha_\ell \};$ /* $\alpha_i \in [0, 1], i = 1, \dots, \ell$ */	Experimental results on
2 for $i = 1$ to ℓ do	Biological Data
3 $p_{\alpha_i} := \frac{1}{\ell};$	Data BiClustering
$\begin{array}{c} \mathbf{J} & \mathbf{p} \alpha_i & \mathbf{p} \alpha_i \\ 4 & endfor \end{array}$	A new GRASP-like algorithm for Data Biclustering
5 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\} := \texttt{filtered-Kmeans}(\mathcal{A}); /* H(\mathcal{B}_q) \leq \delta, q = 1, \dots, k*/$	A solution and objective function
6 for $q = 1$ to k do	Mean squared residue score
7 $\hat{\mathcal{B}}_q := \operatorname{grasp}(\mathcal{B}_q, \Delta, \mathcal{A}, \operatorname{MaxNoImpr}, \operatorname{MaxDist});$	Our proposal, ① Our proposal, ②
8 endfor	Our proposal, ③ Our proposal, ④
9 return $(\hat{\mathcal{B}} = \{\hat{\mathcal{B}}_1, \dots, \hat{\mathcal{B}}_k\});$	Small example, ①
9 return $(D = \{D_1,, D_k\});$	Small example, ⁽²⁾
end	Small example, ③
	Experimental results and
At the first CDASD it $i_{i} = 1$ $i_{i} = 1$	Biological Significance
At the first GRASP it.: $p_{\alpha_i} = \frac{1}{\ell}, i = 1, \dots, \ell$.	To conclude

At any subsequent it., let \hat{z} be the incumbent o.f. value and let A_i be the average o.f. value of all solutions found using $\alpha = \alpha_i, i = 1, ..., \ell$, then

$$p_i = \frac{q_i}{\sum_{j=1}^{\ell} q_j}, \quad q_i = \hat{z}/A_i, \ i = 1, \dots, \ell.$$

A new Reactive GRASP-like algorithm with a learning mechanism: at	Outline
each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.	Data Clustering
algorithm GRASP-like-bicluster(\mathcal{A} ,MaxNoImpr,MaxDist, δ) 1 $\Delta := \{\alpha_1, \dots, \alpha_\ell\}; /* \alpha_i \in [0, 1], i = 1, \dots, \ell*/$ 2 for $i = 1$ to ℓ do 3 $p_{\alpha_i} := \frac{1}{\ell};$ 4 endfor 5 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\} := filtered-Kmeans(\mathcal{A}); /* H(\mathcal{B}_q) \leq \delta, q = 1, \dots, k*/$ 6 for $q = 1$ to k do 7 $\hat{\mathcal{B}}_q := grasp(\mathcal{B}_q, \Delta, \mathcal{A}, MaxNoImpr, MaxDist);$ 8 endfor	GRASP + Path Relinking for Data Clustering Experimental results on Biological Data Data BiClustering A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ^① Our proposal, ^② Our proposal, ^③
9 return ($\hat{\mathcal{B}} = \{\hat{\mathcal{B}}_1, \dots, \hat{\mathcal{B}}_k\}$);	Small example, ① Small example, ②
end	Small example, ³
It starts from a partial solution made of a set $\mathcal{B} = {\mathcal{B}_1,, \mathcal{B}_k}$ of <i>k</i> biclusters found by applying a k-means procedure and retaining only	Experimental results and Biological Significance To conclude
biclusters with small mean squared residue (δ is a given input parameter).	

A new Reactive GRASP-like algorithm with a learning mechanism: at	Outline
each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.	Data Clustering
algorithm GRASP-like-bicluster(\mathcal{A} ,MaxNoImpr,MaxDist, δ)	GRASP + Path Relinking for Data Clustering
$1 \Delta := \{ \alpha_1, \dots, \alpha_\ell \}; \qquad /^* \alpha_i \in [0, 1], i = 1, \dots, \ell^* / 2$	Experimental results on Biological Data
$ \begin{array}{ccc} 2 & \mathbf{for} \ i = 1 \ \mathrm{to} \ \ell \ \mathbf{do} \\ 3 & p_{\alpha_i} := \frac{1}{\ell}; \end{array} $	Data BiClustering
4 endfor	A new GRASP-like algorithm for Data Biclustering
5 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\} := \texttt{filtered-Kmeans}(\mathcal{A}); /* H(\mathcal{B}_q) \leq \delta, q = 1, \dots, k*/$	A solution and objective function
6 for $q = 1$ to k do	Mean squared residue score Our proposal, ①
7 $\hat{\mathcal{B}}_q := \operatorname{grasp}(\mathcal{B}_q, \Delta, \mathcal{A}, \operatorname{MaxNoImpr}, \operatorname{MaxDist});$	Our proposal, [®]
8 endfor	Our proposal, ③ Our proposal, ④
9 return $(\hat{\mathcal{B}} = \{\hat{\mathcal{B}}_1, \dots, \hat{\mathcal{B}}_k\});$	Small example, ①
	Small example, ⁽²⁾ Small example, ⁽³⁾
end	-
It proceeds in the attempt of finding a larger and/or better solution	Experimental results and Biological Significance
iteratively replacing a bicluster in the current solution by a larger and/or	To conclude
better bicluster.	

A new Reactive GRASP-like algorithm with a learning mechanism : at each it., the RCL parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.	Outline Data Clustering
call it, the for parameter $\alpha \in \Delta = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}.$	Data Clustering
algorithm GRASP-like-bicluster(A ,MaxNoImpr,MaxDist, δ)	GRASP + Path Relinking for Data Clustering
$1 \Delta := \{ \alpha_1, \dots, \alpha_\ell \}; \qquad /^* \alpha_i \in [0, 1], i = 1, \dots, \ell^* /$	Experimental results on Biological Data
2 for $i = 1$ to ℓ do	
3 $p_{\alpha_i} := \frac{1}{\ell};$	Data BiClustering
	A new GRASP-like algorithm
4 endfor	for Data Biclustering
5 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\} := \texttt{filtered-Kmeans}(\mathcal{A}); /* H(\mathcal{B}_q) \leq \delta, q = 1, \dots, k*/$	A solution and objective function
6 for $q = 1$ to k do	Mean squared residue score
	Our proposal, ① Our proposal, ②
7 $\hat{\mathcal{B}}_q := \text{grasp}(\mathcal{B}_q, \Delta, \mathcal{A}, \text{MaxNoImpr,MaxDist});$	Our proposal, ③
8 endfor	Our proposal, @
9 return ($\hat{\mathcal{B}} = \{\hat{\mathcal{B}}_1, \dots, \hat{\mathcal{B}}_k\}$);	Small example, ①
	Small example, ⁽²⁾ Small example, ⁽³⁾
end	Sinan example, ©
	Experimental results and
It proceeds in the attempt of finding a larger and/or better solution	Biological Significance
iteratively replacing a bicluster in the current solution by a larger and/or	To conclude
better bicluster.	
Detter Dictuster.	
As soon as MaxNoImpr its are performed without improving the current	
better colution this colution is returned	

better solution, this solution is returned.

Given a bicluster $ar{\mathcal{B}}_q = (ar{I}_q, ar{J}_q)$, grasp iteratively

replaces it by a larger and/or better bicluster in its neighborhood

$$\mathcal{N}(\bar{\mathcal{B}}_q) = \begin{cases} \hat{\mathcal{B}}_q & | & \hat{\mathcal{B}}_q \text{ has one more element and/or} \\ & & \text{one less element (row or column)} \end{cases}$$

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

Given a bicluster $ar{\mathcal{B}}_q = (ar{I}_q, ar{J}_q)$, grasp iteratively

replaces it by a larger and/or better bicluster in its neighborhood

 $\mathcal{N}(\bar{\mathcal{B}}_q) = \left\{ \begin{array}{cc} \hat{\mathcal{B}}_q & | & \hat{\mathcal{B}}_q \text{ has one more element and/or} \\ & & \text{one less element (row or column)} \end{array} \right\};$

the element to be removed and/or added is chosen on the basis either of the diversity or of the improvement in terms of mean squared residue and a RCL mechanism;

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

Given a bicluster $ar{\mathcal{B}}_q = (ar{I}_q, ar{J}_q)$, grasp iteratively

replaces it by a larger and/or better bicluster in its neighborhood

 $\mathcal{N}(\bar{\mathcal{B}}_q) = \left\{ \begin{array}{cc} \hat{\mathcal{B}}_q & | & \hat{\mathcal{B}}_q \text{ has one more element and/or} \\ & & \text{one less element (row or column)} \end{array} \right\};$

- the element to be removed and/or added is chosen on the basis either of the diversity or of the improvement in terms of mean squared residue and a RCL mechanism;
- \Leftrightarrow if a better mean squared residue neighbor bicluster is found, then the selection probabilities of the α 's in Δ are accordingly reevaluated.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

Suppose a matrix A of 10 genes (rows) and 5 conditions (columns) is given:

		Condition 1		Condition 5]
$\mathcal{A} =$	Gene 1	a_{11}	•••	a_{15}	
					,
		•	•	•	
	Gene 10	a_{101}		a_{105} .	

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ^① Our proposal, ^②

Our proposal, ③ Our proposal, ④

Small example, ①

Small example, ⁽²⁾ Small example, ⁽³⁾

Experimental results and Biological Significance

B4OS & BBCC2012 - Napoli, September 25-27, 2012 - p. 71/81

Note: $6 = 3 \times 2$ combinations to match each set of genes with each set of conditions.

Suppose a matrix A of 10 genes (rows) and 5 conditions (columns) is given:

Fixed	as	input	
		1	

- \Rightarrow the number of sets of genes = 3, and
- \Rightarrow the number of sets of conditions = 2,

k-means outputs the required sets and biclusters seeds are created:

 $\mathcal{B} = \{\mathcal{B}_1, \ldots, \mathcal{B}_6\}.$

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ①

Outline

Data Clustering

GRASP + Path Relinking

Experimental results on

for Data Clustering

Biological Data

Data BiClustering

Our proposal, 2

Our proposal, ③ Our proposal, ④

Small example, ①

Small example, 2 Small example, 3

Experimental results and **Biological Significance**

To conclude...

Condition 1 Condition 5 . . . Gene 1 a_{11} . . . a_{15} $\mathcal{A} =$ • Gene 10 a_{101} . . . a_{105}

•

Condition 5

 a_{15}

 a_{105}

Suppose a matrix \mathcal{A} of 10 genes (rows) and 5 conditions (columns) is given:

. . .

. . .

. . .

Condition 1

 a_{11}

 a_{101}

Fixed	as	input	
IIACA	au	IIIp at	

 \Rightarrow the number of sets of genes = 3, and

 $\mathcal{A} = \Big|$

Gene 1

Gene 10

 \Rightarrow the number of sets of conditions = 2,

k-means outputs the required sets and biclusters seeds are created:

Note: $6 = 3 \times 2$ combinations to match each set of genes with each set of conditions.

Among the 6 combinations, only those whose mean squared residue is less than or equal to a given threshold δ are saved. Suppose that

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}.$$

Outline **Data Clustering GRASP + Path Relinking** for Data Clustering **Experimental results on Biological Data Data BiClustering** A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, 2 Our proposal, ③ Our proposal, ④ Small example, ① Small example, 2 Small example, 3 Experimental results and **Biological Significance** To conclude...

 $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_6\}.$

Suppose that

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}.$$

 \mathcal{B} is given as input to an iterative refinement procedure that tries to add and/or remove items, considering first the columns and then the rows.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

Suppose that

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}.$$

 \mathcal{B} is given as input to an iterative refinement procedure that tries to add and/or remove items, considering first the columns and then the rows.

Suppose that $\mathcal{B}_1 = (I_1, J_1)$, with $|I_1| = 6$ and $J_1 = \{A_1, A_3, A_5\}$.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

To conclude...

Biological Significance

Suppose that

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}.$$

 \mathcal{B} is given as input to an iterative refinement procedure that tries to add and/or remove items, considering first the columns and then the rows.

Suppose that $\mathcal{B}_1 = (I_1, J_1)$, with $|I_1| = 6$ and $J_1 = \{A_1, A_3, A_5\}$.

Suppose that

- \triangleq RCL={ A_2, A_4 } (hScore);
- $\land \mathcal{A}_4$:=select(RCL);
- $\exists J_1 := J_1 \cup \mathcal{A}_4.$

Therefore,

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\},\$$

$$\mathcal{B}_1 = (I_1, J_1), |I_1| = 6 \text{ and } J_1 = \{\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5\}.$$

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③ Experimental results and Biological Significance

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

To conclude...

$$\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}, \ \mathcal{B}_1 = (I_1, J_1), \ |I_1| = 6, \ J_1 = \{\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5\}.$$

The local search tries to improve \mathcal{B}_1 , by performing the following 3 steps, until a certain number of its without improvement are performed.

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

To conclude...

 $\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}, \ \mathcal{B}_1 = (I_1, J_1), \ |I_1| = 6, \ J_1 = \{\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5\}.$

The local search tries to improve \mathcal{B}_1 , by performing the following 3 steps, until a certain number of its without improvement are performed.

① Randomly select a column not included: in our example, A_2 . If the distance of A_2 from the column previously extracted from RCL (A_4) is at most a threshold given in input (MaxDist), A_2 is added to J_1 .

Let us suppose this is the case: $J_1 = \{A_1, A_2, A_3, A_4, A_5\}.$

- ② From J_1 the column that makes worst the hScore is then eliminated. Suppose that this column is $A_3 \Longrightarrow J_1 = \{A_1, A_2, A_4, A_5\}.$
- ③ A further column is selected at random from J₁.
 It will be removed only if an improvement in terms of hScore is obtained.

Supposing that this happens for $A_5 \Longrightarrow J_1 = \{A_1, A_2, A_4\}.$

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering A solution and objective function Mean squared residue score Our proposal, ① Our proposal, ② Our proposal, ③ Our proposal, ④ Small example, ① Small example, ③

Experimental results and Biological Significance

To conclude...

 $\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}, \ \mathcal{B}_1 = (I_1, J_1), \ |I_1| = 6, \ J_1 = \{\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5\}.$

The local search tries to improve \mathcal{B}_1 , by performing the following 3 steps, until a certain number of its without improvement are performed.

Randomly select a column not included: in our example, A₂.
 If the distance of A₂ from the column previously extracted from RCL (A₄) is at most a threshold given in input (MaxDist), A₂ is added to J₁.

Let us suppose this is the case: $J_1 = \{A_1, A_2, A_3, A_4, A_5\}.$

- ② From J_1 the column that makes worst the hScore is then eliminated. Suppose that this column is $A_3 \Longrightarrow J_1 = \{A_1, A_2, A_4, A_5\}.$
- ③ A further column is selected at random from J₁.
 It will be removed only if an improvement in terms of hScore is obtained.

Supposing that this happens for $A_5 \Longrightarrow J_1 = \{A_1, A_2, A_4\}.$

These steps are applied on each selected bicluster \mathcal{B}_1 , \mathcal{B}_2 , and \mathcal{B}_3 .

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance Test environment

Datasets Statistics, ①

Statistics, @

To conclude...

Experimental results and Biological Significance

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest B4OS & BBCC2012 - Napoli, September 25-27, 2012 - p. 74/81

Test environment

- MacBookPro 2GHz Intel Core Duo running MAC OSX 10.6;
- C language, compiled with the Apple Xcode 3.1;
- Stopping criterion: a maximum number of iterations without improvement of the incumbent solution.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

Test environment

Datasets Statistics, ①

Statistics, ⁽²⁾

Datasets

Datasets:

 Yeast (Saccharomyces cerevisiae) cell cycle expression [S. Tavazoie et al, 1999]:

it includes 2884 genes and 17 conditions, with the expressionlevel reported as an integer value in the range 0 to 600.Missing values are represented by -1.

 2 Lymphoma/Leukemia Molecular Profiling Project [A.A. Alizadeh et al, 2000]:

it includes 4026 genes and 96 conditions, with the expression level reported as an integer value in the range -300 to 300.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance Test environment

DatasetsStatistics, ①Statistics, ②

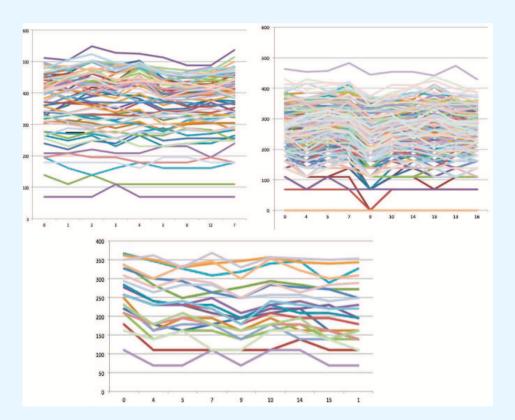
Statistics, 1

Results for a set of **33 biclusters generated for Yeast Dataset** and **11 biclusters generated for Lymphoma Dataset**:

Statistics (10 trials)	Yeast	Lymphoma
mean number of genes	97,33	59,63
mean number of conditions	10,52	8,18
mean volume	1000,06	478,93
mean <i>H</i> value	195,73	0,03
mean running time (in secs)	4044,43	5012,03
mean H_r value	1821,76	0,56

GRASP + Path Relinking for Data Clustering Experimental results on Biological Data Data BiClustering A new GRASP-like algorithm for Data Biclustering Experimental results and Biological Significance Test environment Datasets Statistics, © Statistics, © To conclude...

Our proposal is outperforming a simple random approach, since H_r is in both cases about one order of magnitude larger than the H.


Outline

Data Clustering

Statistics, 2

Bicluster plots on Yeast:

gene behaviour on the rows; conditions on the columns.

 Data Clustering

 GRASP + Path Relinking

 for Data Clustering

 Experimental results on

 Biological Data

 Data BiClustering

 A new GRASP-like algorithm

 for Data Biclustering

 Experimental results and

 Biological Significance

 Test environment

 Datasets

 Statistics, ①

 Statistics, ②

 To conclude...

Outline

Genes in sample biclusters present a similar behavior under a set of conditions \implies Our method is able to identify coherent biclusters from gene expression data.

Same on the Lymphoma Dataset.

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~festa

To conclude...

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude...

Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions

- ✓ We have designed several GRASP+PR algorithms for Data Clustering:
 - ♦ GRASP-PRf: GRASP + PR forward;
 - ♦ GRASP-PRb: GRASP + PR backward;
 - ♦ GRASP-PRm: GRASP + PR mixed;
 - ♦ GRASP-PRrnd: GRASP + PR greedy randomized and tested on 5 datasets.
- ✓ We have designed a Reactive GRASP-like algorithm for Data BiClustering tested on 2 datasets.
- ✓ For all datasets, the proposed algorithms outperformed the state-of-the-art approaches and were able to identify coherent clusters/biclusters.

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude... Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions

As future work, we intend

- ✓ to perform further validation with other datasets from literature;
- to further investigate the robustness and efficiency of our proposals by performing the so called TTT-plots;
- ✓ to include the automatic parameter tuning procedure for GRASP+PR heuristics based on a biased random-key genetic algorithm [Festa, Gonçalves, Resende, and Silva, 2010].

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude... Conclusions and Future Directions Conclusions and Future Directions

Conclusions and Future Directions

As future work, we intend

- ✓ to perform further validation with other datasets from literature;
- to further investigate the robustness and efficiency of our proposals by performing the so called TTT-plots;
- ✓ to include the automatic parameter tuning procedure for GRASP+PR heuristics based on a biased random-key genetic algorithm [Festa, Gonçalves, Resende, and Silva, 2010].

THANK YOU!

Outline

Data Clustering

GRASP + Path Relinking for Data Clustering

Experimental results on Biological Data

Data BiClustering

A new GRASP-like algorithm for Data Biclustering

Experimental results and Biological Significance

To conclude... Conclusions and Future Directions Conclusions and Future Directions

Paola Festa - DMA, Università degli Studi di Napoli FEDERICO II E-mail: paola.festa@unina.it - Web: http://www.dma.unina.it/~fest

B4OS & BBCC2012 – Napoli, September 25-27, 2012 - p. 81/81