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DNA Barcode

» Very short nucleotide sequence, acting as a
unique element used for identification and
taxonomic purposes.

» A single gene that works as a true “barcode”
providing unique identification




DNA Barcode

» In the animal kingdom, mitochondrial gene
cytochrome ¢ oxidase subunit 1 (COl), about
650 bp long, has proven to be the best
barcode sequence.

» DNA barcoding has been used for the study
of the biodiversity of several species, such as
fishes, birds and some bugs.
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Traditional Analysis

» Well consolidated bioinformatics
techniques:

- Sequence alignment
- Computation of evolutionary distances

- Inference of Phylogenetic trees.




Sequence Alignment

» Much of bioinformatics involves sequences

- DNA sequences
- RNA sequences
> Protein sequences

» We can think of these sequences as strings of
letters

- DNA & RNA: |alphabet|=4
> Protein: |alphabet|=20




Sequence Alignment

» Main purposes:

- Comparison among sequences
> Finding similarities
> Building phylogenetic trees

» Three types of alignment:

> Local Alignment (Smith & Waterman, BLAST)
> Global Alignment (Needleman & Wunsch)
> Multiple Alignment (ClustalW)




Sequence Alignment

» Global vs Local Alignment

==T=-CC-C-AGT--TATGT-CAGGGGACACG-~-A-GCATGCAGA-GAC

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtegttttcagCAGTTATGTCAGate

AGCCTTGTCATCCGTATC-TTTCAA-——-
AGCCTTGTCATCCGTATC-TTTCA-———-

Itiol i ~GCCTTGTCATCCGTATC-TTTCAACG--
--CCTTGTCATCCGTATC-TTTCAACGTG

» Multi ple A ignment --CCTTGTCATCCGTATC-TTTCAAC---
-—-CTTGTCATCCGTATCTTTTCAAC--~-
-—-CTTGTCATCCGTATC-T ===
-===TTGTCATCCGTATC-TT———————-
—————— GTCATCCGTATC-TTTCAACGTG
------ GTCATCCGTATC-TTTCAACGTG
-------- CATCCGTATC-TTTCAA-——-




Sequence Alignment: Example

» Input: two sequences over the same alphabet

- GCGCATGGATTGAGCGA and GCGCCATTGATGACCA

» Output: an alignment of the two sequences

-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A




Sequence Alignment: Example

Three elements:
» Perfect matches

» Mismatches

» Insertions & deletions (indel)

p—



Sequence Alignment: Example

» Score each position independently
(Substitution Matrix):

- Match: +1
o Mismatch: -1
o Indel; -2

» Score of an alignment is sum of position

SCOores

Score: (+1x13) + (-1x2) + (-2x4) =3 Score: (+1x5) + (-1x6) + (-2x11) =-23



Evolutionary Distances

» Compute (dis-)similarity among aligned
sequences:

- Number of substituions per site:

Number of different nucleotides

Total number of compared nucleotides

» It understimates the real number of
substitutions because of biological
phenomena like multiple hits




Evolutionary Distances

» Several stochastic models based on a set of a
priori assumptions:

> All sites evolve in an independent way
- All sites can change with the same probability
- All kinds of substitutions are equally probable

o]

» The more complex the model, the less
number of assumptions




Evolutionary Distances

» Most common stochastic models (from
simpler to more complex):

> Jukes and Cantor (1969)
> Kimura (1980)

> Tamura (1992)

> Tajima and Nei (1982)

» They DO NOT represent a metric!

> i.e. NO triangle inequality




Phylogenetic Trees

» Exploit evolutionary relations among species

» Hierarchical structure made of nodes and
branches:

- Terminal nodes (leaves): taxa
> Internal nodes: ancestor taxa

> Branches: link two nodes. Their length proportional
to the (evolutionary) distance between nodes




Phylogenetic Trees
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Phylogenetic Trees

» Distance-Based algorithms:

- Unweighted Pair Group Method with Aritemtic Mean
(UPGMA)

- Neighbor-Joining

» Sequence-Based algorithms:

- Maximum Parsimony

- Maximum Likelihood




Drawbacks of traditional analysis

Sequence Alignment needs a lot of parameters and
does not give a unique result

v

v

High computation time for long sequences (O(r?))

Different distance models according to a priori
assumptions

v

Evolutionary distances are stochastic models that
do not define a distance metric

v




Alternative analysis

» An alignment-free methodological approach,

based on compression-based distances
derived from Universal Similarity Metric
(USM):

- Does not require a prior alignment of genomic
sequences.

- Parameterless
> Strong theoretical assumptions

> Definition of a distance metric




Universal Similarity Metric (USM)

» USM [Li et al.,’04] is a class of distance
measures, defined in terms of the
Kolmogorov complexity.

Usy - 1Deey)  max (K(xly), K(ylx))
max {K(x), K(y)}  max {K(x), K(y)]

» USM is a metric, normalized (it ranges
between O and 1), is “universal’.




Universal Similarity Metric (USM)

» Universality:

- Text files
> Images
> Music files

» Used for example to compute linguistic trees
among different languages




Universal Similarity Metric (USM)
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Kolmogorov Complexity

» Definitions:

- “The Kolmogorov complexity K(x) of a string x is the length
of the shortest binary program x* to compute x on a
universal Turing machinée’

- “K(x/y) is the conditional Kolmogorov complexity of two
strings, x and y, defined as the length of the shortest
binary program that produces x as output, given the input

VA

14

» It represents a theoretic concept =>
it is NOT computable!, only approximated




Compression-based Distances

» Normalized Compression Distance (NCD):

C(xy) —min {C(x), C(y)}
max {C'(x), C(y)}

NCD(x,y) =

» C(x) is the size, in byte, of the compression
version of string x

» C(xy) is the size of the compressed version of
the concatenation of string x and y




NCD: How it works




NCD: How it works

» Normalised
Compression NCD(x, y) =
Distance

C(ry) —min{C(x), C(y)}
max {C'(x), C(y)}

Seql:...ACGTCATA. .
Seq2:...ACGGCATA. .

ﬁS&E‘éﬁ% High compression ‘ Low distance
GenCompress

Seql:...ACGTCATA..

- - - ACGICATA Low compression ‘ High distance

Seq3:...CCGACACT. . .. .CCGACACT% b




GenCompress

» String compression algorithms find portions of
input string that are repeated and substitute them
with a shorter reference

» The set of repeated string portions is indicated as
“dictionary”.

» GenCompress dictionary based compressor
optimized to work with DNA sequences, having
only a 4 letter (A,C,G,T) alphabet
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Proposed Methodology
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Proposed Methodology

Evolutionary

Sequences . Tree
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Proposed Methodology
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Tree Comparison

» Nye et al. (2006) algorithm

- |t considers topological features

- It builds a sort of alignment between the two trees
to compare

> It compares the shared leaf nodes belonging to
two corresponding partitions




Tree Comparison
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Tree Comparison

Thicker edges mean

the corresponding
partitions within the
two trees have not
exactly the same leaf
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Tree Comparison
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Experimental Setup

» 30 input datasets from BOLD database

Table 2 Barcode datasets description.

DATASET # Species # Specimens % Sequences with undefined bases Sequence Length
ABSMC 45 72 13% 650-657
AECI 30 30 Q0% 679
AGFDO 22 22 Q0% om
AGFSU 42 48 200 633639
AGLUO 38 45 21% 630
AGWEB 33 33 B70%% 00
ARCPU 28 52 508 525658
BACK 74 112 25% 516657
BCUB 30 108 0.%% 657
BLSPA 86 86 4% 604-658
BREP 17 106 Q.0 658
BSHMT 22 141 5500 645
CNLVA 33 73 500 625-658
DLTC 40 &7 1.5% 685-1821
DSALA 12 44 11.0% 549651
DSANA 14 274 0.0% 652
DSFCH 17 173 34 620-650
FBLGO 44 122 24% 580658
FBLOT 34 54 308 4159558
GBFBA 27 27 708

GZPSE 3 78 7.0

JDWAM 103 226 8.5%

JTB 53 225 0.4

MHTRI 13 108 3%

MJIMSL K- 198 45%

Onychophora 52 210 0.%%

PLOCE 33 102 0.0%%

W
\\\\ RDMYS ] 37 32086

\\ SIBHI 3 &5 0.0%
\ WXYZ 3 34 30

2% \.‘\




Experimental Setup

» Evolutionary distance by means of different
models

> Kimura 2-parameter
- Tajima-Nei

- Tamura 3-parameter
> Tamura-Nei

» Evolutionary distances were computed using

MEGA 5 software
(http://www.megasoftware.net/mega.php)




M Best tree similarity score using UPGMA

M Best tree similarity score using NJ
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Exper
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Experimental Results

W <80% of tree similarity

W 80% - 90% of tree
similarity
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Experimental Results: Details

» Trees obtained from compression-based methods

are very similar (above 90%) to the ones built from
classic distance

» The best results (>95%) with pure barcode
datasets: about 650 sequence length and no
undefined nucleotides

» Lower score (82%) for datasets with high
percentage of undefined bases (noisy)

- GenCompress works as a generic ASCII string compressor
giving low compression ratios




Traditional vs Compression-Based
Analysis

No need of Sequence alignment (of course!)

v

v

Parameterless approach
» Parallelizable approach

USM, and NCD, define a distance metric and hold
on strong theroretical aasumption

v

> Information theory
- Kolmogorov complexity

It works with short barcode sequences

>




For further results and analysis
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Abstract

Background: The key idea of DNA barcode initiative is to identify, for each group of species belonging to different
kingdoms of life, a short DNA sequence that can act as a true taxon barcode. DNA barcode represents a valuable
type of information that can be integrated with ecological, genetic, and morphological data in order to obtain a
more consistent taxonomy. Recent studies have shown that, for the animal kingdom, the mitochondrial gene
cytochrome ¢ oxidase | (COI), about 650 bp long, can be used as a barcode sequence for identification and
taxonomic purposes of animals. In the present work we aims at introducing the use of an alignment-free approach
in order to make taxonomic analysis of barcode sequences. Our approach is based on the use of two
compression-based versions of non-computable Universal Similarity Metric (USM) class of distances. Our purpose is
to justify the employ of USM also for the analysis of short DNA barcode sequences, showing how USM is able to
correctly extract taxonomic information among those kind of sequences.

Results: We downloaded from Barcode of Life Data System (BOLD) database 30 datasets of barcode sequences
belonging to different animal species. We built phylogenetic trees of every dataset, according to compression-based
and classic evolutionary methods, and compared them in terms of topology preservation. In the experimental tests, we
obtained scores with a percentage of similarity between evolutionary and compression-based trees between 80% and
100% for the most of datasets (34%). Moreover we carried out experimental tests using simulated barcode datasets
composed of 100, 150, 200 and 500 sequences, each simulation replicated 25-fdld. In this case, mean similarity scores
between evoluticnary and compression-based trees span between 83% and 99% for all simulated datasets.

Conclusions: In the present work we aims at introducing the use of an alignment-free approach in order to make
taxonomic analysis of barcode sequences. Our approach is based on the use of two compression-based versions of
non-computable Universal Similarity Metric (USM) dass of distances. This way we demonstrate the reliability of
compression-based methods even for the analysis of short barcode sequences. Compression-based methods, with
their strong thecretical assumptions, may then represent a valid alignment-free and parameter-free approach for
barcode studies.




Practice

» Sequence Compression
- Parsefasta.py, Concatena.py, Gencompress.py

» NCD Computation
> NCD.py

» Tree generation
- MEGA software

» Tree comparison
> Phylocore.jar




Parsefasta.py

File Edit Format Run  Options Windows Help
def parsefasta(dataset):

from Bio import SeqIO

##estre le sequenze come file di testo e 11 salva

cont =1

for seq record 1n SeqlO.parse(dataset, "fasta"):
sequenza = seq record.seq.tostring/()
sequenza = sequenza.lower ()
sequenza = sequenza.replace("-","")
foutput = open("./sequenze txt/sequenza"+str(cont)+".txt", 'w')
foutput.write (sequenza)
foutput.close()
cont +=1

slze = cont-1

return size




Concatena.py

File Edit Format Run Options Windows Help

lt#concatena due file di testo in un unico file di destinazione
def concatena(size):
##size = 11
for cont in range(l, size+l):
finput = open("./sequenze txt/sequenza"+str(cont)+".txt")
sequenza = finput.readline().strip()
for cont2 in range (cont+l, size+l):
finput2 = open("./seguenze txt/sequenza"+str (cont2)+".txt")
sequenzazZ = finput2.readline () .strip()
sequenzatot = sequenza+sequenzal
foutput = open("./sequenzeconc txt/sequenza"+str (cont)+"+"+str(cont2)+".txt", 'w')
foutput.write (sequenzatot)
foutput.close()




Gencompress.py
7 gencompresspy - DiiaEAOANSEpR e arNgencomress M

File Edit Format Run Options Windows Help

##script che lancia gencompress
def gencompress () :
import os
dirinput = os.listdir("./™)
size = 0

for elem in dirinput:
1T elem.endswith ("txt"):
05.5ystem ("GenCompress.exe "+elem+"")
size+=1

i os.system("rm *.LOG")
0s.system("copy *.GEN ..\\sequenze compr")
o5.5ystem("del *.log")
os5.5ystem("del *.GEN")
return size




NCD.py

76 NCD.py - Dislides\tutorialseriptiscript.tutoriah\NCD.py I .

File Edit Format Run  Options Windows Help
Ercm numpy import *

def necd(dataset, size):
## compute NCD distance among comressed barcode sequences
import os
seq = "./sequenze compr/" ##path of compressed sequences
seq conc = "./sequenzeconc compr/" ##path of concatenated compressed sedquences

ncd matrix = zeros((size,size), dtype=double)

for elem in range (ncd matrix.shape[0]):
for elem2 in range(elem+l,ncd matrix.shape[0]):
concat = os.path.getsize (seq conc+"sequenza"+str((elem+l))+"+"+str((elem2+1))+".GEN")
seql = os.path.getsize(seqg+"sequenza+str((elem+l))+".GEN")
seq2 = os.path.getsize(seg+"sequenza"+str((elem2+1))+".GEN")
ncd = concat - min(seql, seqg2)

ncd = float(necd) /float (max(seql, seqg2))
ncd matrix[elem] [elem2] = ncd

a =matrix(ncd matrix)
savetxt ("./"+dataset+" ncd.csv", a, fmt="%f', delimiter=",")




Sections

» 1)

» 2) Alignment-free Classification
techniques




Outline

» DNA Sequence Approaches for Classification

> Distance Based (phylogenetic tree)
- Model Based (LDA)

- Feature Based (Pattern/Vector)
- Spectral Representation

» Feature Based Training Methods
> Supervised (SVM)
> Unsupervised (NG)

» A Spectral Representation + NG pipeline
> Implementation in R environment




Biological Classification

Scientific classification in biology,
is a method of scientific
taxonomy used to group and
categorize organisms into
groups such as genus or
species.

Taxonomic category:

Taxa classification is hierarchical.
In a biological classification,
rank is the level in a hierarchy.

Domain ]

Kingdom ]

Phylum 1

Class

Order
A

b

Family |

Genus 1

Species




Sequence Classification Methods

v Distance based:

- Define the distance function which measures the
similarity between sequences; determines the
quality of the classification significantly.

v Model based:

- Use statistical and probabilistic methods to classify
sequences, exploiting generative models.

v Feature based:

- Find representative patterns or feature vector and
then apply conventional classification methods.

Feature selection plays an important role in this

kind of methods.
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Sequence distance based

Cladistics is a to biological classification approach based
on unique characteristics of common ancestry.

Molecular systematics
with evolutionary tree

assumes that - Animals Funsl TEOE e

classification must i Green nensulrbacteri

CO rre S po n d to Planctomycetes
Protozoa Spirochaetes

phylogenetic descent.

Crenarchaeota — |

Fusobacteria

/ Cyanobacteria

(blue-green algae)

Euryarchaeota ’ Thermophilic
sulfate-reducers

Nanoarchaeota P

Acidobacteria

Protoeobacteria



Weakness of Sequence Distance based

» Errors in DNA sequence alignment to
establish homology by nucleotide position
(GAP, SNP).

» Lost of information when approximation is
used for reconstruction of phylogenetic
tree.

» Evolutionary distances are stochastic
models that do not define a distance metric.

,.'| \\\\\\
\\\



Model based

It assumes sequences in a class are generated
by an underlying model M.

¥

Given a class of sequences,
M models the probability distribution of the sequences
in the class.

Training step => the parameters of M are
learned.

Classification step => a new sequence is
assigned to the class

with the highest likelihood.




Model based: Naive Bayes Classifier

» The simplest generative model is the Naive
Bayes sequence classifier.

Assumption:
“Given a class, the features in the sequences
are independent of each other.”

» The conditional probabilities of the features
in a class are learned in the training step.




Model based: Probabilistic Topic Model

Generative model that allows sets of observations to be
explained by unobserved groups that explain why
some parts of the data are similar.

¥

Latent Dirichlet Allocation

In Text Analysis:

each document is a mixture of a small number
of topics and that each word's creation is
attributable to one of the document's topics.




Probabilistic Topic Models-Theory

Hypothesis :

» Topics are probability distributions over a fixed
dictionary (set of words)

» Topics represent recurring themes over documents

» Documents can be labeled according to their most
recurring (probable) topics

Aim:

Given a number of fixed a priori topics

~>

Extract topics from a corpus of documents




robabilistic Topic Models-Theor

Topics

Documents

Topic proportions and
assignments
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Probabilistic Topic Models-Use

» Each document has a probability of showing a
specific topic

» Given a fitted model, trained on a corpus of
tagged documents, we can obtain the topics
of an unknown document

¥

Document Classification




Topic Models and DNA sequence

Premises:
» A DNA sequence as a document

» Words as DNA fragments (e.g., k-mers)

K-mer: a k-base long sequence (k-tuple) of DNA




Topic Models and DNA sequence

...ACCATCACCACCATCCAGGATGAGGATAGACCGTC... Seq.1
» A DNA sec

...CGCTCGGATGGACACCAGCTGCTACAGATGACAC... Seq.2

...CGCTGAACAGCTCGCCAGATGAGGATAGACCGTC... Seq.3
4 WO rds as l ...CGCT GATGG CCAGCTGCTACAGATGACAC... Seq.n

8-mer
sliding window

CGGATGGA

8-mers GGATGGAC
from Seq.n| [GaTGGACA

-
B3

S




Topic Models and DNA sequence

Premises:
» A DNA sequence as a document
» Words as DNA fragments (e.g., k-mers)

» Extract the set of topics from a dataset of
sequences

Thesis:

» Sequences sharing the same topics belongs
to the same taxa




Training Phase

DNA K-mers Fitted Topic
sequence decomposition Model

Dataset

Bag of Words
representation

Topics to Sequences
assignment




Testing Phase

Fitted Topic
Model

V.
V.

/
Bag of Words

representation — .
Each Topic inherits the taxon of the seq.s

where it is most frequently found

TEST K-mers Posterior Topic Taxonomy

DNA decomposition probability Assignment Assignment
sequence

Sequence Assigned to its
Probability that a Topic is present most probable Topic
into a test sequence.




Feature based techniques

Existing methods differ from each other on the
following aspects:

- Which criteria should be used for selecting features,
such are distinctiveness, frequency and length?

> In which scope does feature selection reflect the
sequential nature of a sequence, local or global?

- Should feature selection be integrated within the
process of constructing the classifier or a separate
pre—-processing step?




Pattern-based feature selection
method

» The features are short DNA sequence
segments which satisfy the following criteria:
(1) frequent in at least one class;

(2) distinctive in at least one class;
(3) not redundant.

» Cons: they describe the local properties of a
long DNA sequence.




Vector-based feature selection
method

» Given a set of k-mers, a sequence can be
represented as a vector of the presence and the
absence of the k-mers or as a vector of the
frequencies of the k-mers.

Counting k—~mers with Sliding
Window, step=1

GATT
'A TTA
about sequence of k-mers. I'|' I'|' A C

Cons. it does not save information

TACA




K-mers of a DNA sequence S

TTCTTTAAGATTACT TAT TCGAACTGAATTAGGAACCCCAGGATCTTTAAT
TTTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAATTGACTAGTTC
TTTGATTATTACCCCCATCTTTAACTTTATTAATT TCAAGAAGAATTGTTGA
GCCCATCAAGGAGCATCTGTTGATTTAGCAATTTTTTCCCTTCATCTTGC
CGAATTAATAATTTATCTTTTGATCAAATACCATTATTTGTTTGAGCTGTAG

4 K_ mer. a k - b ase I on g TATATTATTAACAGATCGAAATF TAAATACTTCTTTTTTTGATCCTGCAGGA

sequence (k-tuple) of DNA \
(a, a,,...,a )a eS,i=1,2,...,k GGAAT

Spectrum(5)

K=5 => 45>words= 1024 words

» Spectrum (K-mer feature
vector): constructed using a
frequency fof each k-mer in
a DNA sequence




DNA Spectrum with 1-mismatch

- GAGCAGGACTAATTGGAACTTCTTTAAGATTACTTATTCGAACTGAATTAGGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACAAT
ACAGCTCATGCATTTATTATAATT TTATAGTTATACCTATTATAATCGGAGGATTTGGAAATTGACTAGTTCCATTAATAATAGGTGCCCCAGATATAG

xGAAT

GxAAT

| GGAAT | GGxAT
GGAXT

GGAAX

Spectrum(5) Mismatch(5,1)

40

1 mismatch



Research on DNA k-mers

* Examine the properties of these DNA words and how their
distributions vary between different species or genome
elements.

* Study on the whole genome for examine models and
modalities for different species.

* Words with extreme frequencies, namely, either missing or
rare k-mers, or those with very high frequencies.

<10 Human Exons, k=9

Human Introns, k=10

Human Promoters 5000, k=7
0.02 ; :

3

[
[d)]

0.015

0.01

-
- o N

0.005

o
[d)]

Frequencey of appearance
Frequencey of appearance
Frequencey of appearance

0
0 500 1000 0 1000 2000 3000 0 500 1000
Number of k-mers Number of k-mers Number of k-mers




DNA fragment Nucloetide

Frequencies

Test set:
From whole genome sequencing, test 10kb fragment of 65
bacteria and 6 eukaryotes from NCBI dataset.

Conclusion:

—dinucleotide frequency is unable to bin sequence fragments
into well-clustered species groups;

—increasing order of oligonucleotide frequency may deteriorate
the assignment of DNA sequences to classes.

Clustering Tecnique: Results
SOM + PCA preprocessing Dinucleotide 094
Trinucleotide 0.98

Clustering evaluation: Tetranucleotide |  0.98

Pentanucleotide 0.99

\ RARRAN \



Training Methods

» Supervised
» Unsupervised

» (Semi-supervised)




Supervised classification methods

» Desired output must be provided for each
input used in the training.

> Inputs are processed and compared with its actual
outputs against the expected outputs.

> The process is repeated until the errors are
minimized.

» Objective: error minimization of the number
of misclassifications.




Support Vector Machine

The SVM procedure reconstructs separating hyperplanes in Euclidean
space to classify real-valued vectors.

There are many hyperplanes that might classify the data:
it finds the maximum-margin hyperplane:

where distance from it to the nearest
data point on each side is maximized. , 4

2

Double Objective at the time:
- Maximize hyperplanes margin
- Minimize training set errors




Support Vector Machine

If non-linear separation ‘ Feature space transformation

General idea: the original input space can always be mapped to

some higher-dimensional feature space where the training set is
separable.




Weakness of SVM

» Sensitive to noise

— A relatively small number of mislabeled examples
can dramatically decrease the performance.

» It only considers two classes at a time
- to do multi-class classification, it learns n SVM’s.

» Choice of kernel
— Gaussian or polynomial kernel is default;
- if ineffective, more elaborate kernels are needed.




Unsupervised classification
methods

° Training samples contain only input patterns
- No desired output is given (teacher-less)

> Learn form classes/clusters of sample
patterns according to similarities among
them

- Sequences in a cluster would have similar features;

- No prior knowledge as what features are important
for classification, and how many classes are there.




Prototype-Based Methods

» The prototypes represent the usually a-priori fixed
number of clusters by representatives, and the
cluster assignment takes place based on the

similarity to the cluster prototype.

» Decomposition of the given data set into clusters
can be fuzzy or crisp :

- k-means,

- fuzzy-clustering,

> neural gas,

- self-organizing map




K-Centroids Cluster Analysis

v Cluster problem
- estimate a “good” number of C clusters for a data set

Xy =X Xy |+ X € variable space
» K-centroids cluster problem
o find a set of centroids C, for fixed K such that the
average distance of each point to the closest centroid
is minimal.
» Maximum radius cluster problem

o find the minimal K such that a set of centroids C,
exists, where

max D(x ,C(x ))<r \/
(_

n=l1,...N

>NK(x _c )2
for a given radius K




K-Centroids Cluster Analysis

» Representing clusters by centroids has
computational advantages when predicting
cluster membership for new data.

» For radius calculation one needs only
comparison with the K centroids, whereas for
diameter calculation one needs pairwise
comparison with all N data points.




Neural Gas

» NG provides input space representations by
constructing data summaries (via prototypical
vectors).

» It’s a gradient descent procedure imitating gas
dynamics within data space to calculate the
prototypes.

» Soft Competitive Learning (WTM):

> not just the winning neuron adjusts its prototype, but all
other cluster prototypes have the opportunity to be
adapted based on how proximate they are to the input

pattern.




Neural Gas Algorithm

1. Initialize a set of prototype vectors W ={w, , w,,
, W} (randomly);

2. Present an input pattern x to the network. Sort the
index list in order, from the prototype vector with
the smallest Euclidean distance from X to the one
with the greatest distance from X ;

3. AdJUSt the prototype vectors using the learning
Iearnmg rate 1 = ne(n, /n,)iter/iter-max)
decay constant A = A i.(Af/A I)(/ter/iter_max)

4. Repeat steps 2 and 3 until the maximum number

of iterations is reached.




NG Application
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NG Comments

1. Ideally, when learning stops, each W; is close to the
centroid of a group/cluster of sample input vectors.

2. To stabilize W;, the learning rate Mmay be reduced
slowly toward zero during learning, e.g., n(t+1) <n(t)

3. # of output nodes:
- too few: several clusters may be combined into one class
- too many: over classification

4. Initial:
> learning results depend on initial weights (node positions)

> training samples known to be in distinct classes, provided
such info is available

- random (bad choices may cause anomaly)

5. Results also depend on sequence of sample presentation




A pipeline for
Analysis of DNA Barcode Sequences
using
Spectral Representation
(feature based representation)

and

Neural Gas
(unsupervised learning)




Selection of High Frequency Words from
DNA Spectrum

Basic Assumption: Similar spectra ~ high similarity score

K=5 => 1024 words " : ¥ |
50 T L ¥ r 1’— bl
For each reference spectra, .
we select 7 HFW. i)
| |
These nwords represents a

fingerprint for all DNA
sequences, whose spectra
are clustered with this
reference spectrum.




Training Phase

— A = [segh 1:..ACTGATTTA.., segh 2:..0TTGITTAG.., segh 3:
—— B = [segB_1l:..3A0GTTCCG.., seqgB 2:..ATCGATCAG.., segB 3:
—— € = [=zegC 1:..CTEAACGEAA.., seqC 2:..CTTGATEAA.., seqC 3:
o
AL ® B
L
o
Spectrum ulllus, Feature Space S Neural Gas
- , . ————» with
Conversion Conversion n neurons

Feature Space @1024 words
e -

Pre-labelled
sequences

Neural Gas with 15 neurons (15 centroids)



Training Phase

— A= [geqn 1:..ACTEATTTA.., seqh 2:..CTTGTTTAG.., seql 3:1..... ]
- - - Pre-labelled
—— B = [segB 1:..3A0GTTCCG.., seqgB 2:..ATCGATCAG.., segB 3:..... ] sequences
—— € = [=egC 1:..CT32AC0GE3A.., seqC 2:..CTTGATGAA.., seqC 3:1..... ] A BE C
il o o o * % %
fo Neural Gas= ﬁ" Lakbel n
Spectrum ulllus, Feature Space Gl :
- . ConTeTrsion with | EReference pP———mo—m
Conversion n neurons Spectra
Calculate n
Centre
Clu=sters C

Feature Space @1024 words
e -

Neural Gas with 3 neurons (3 centroids)



Training Phase

— A= [geqn 1:..ACTEATTTA.., seqh 2:..CTTGTTTAG.., seql 3:1..... ]
= = - Pre-labelled
—— B = [segB 1:..3A0GTTCCG.., seqgB 2:..ATCGATCAG.., segB 3:..... ] sequences
—— € = [=egC 1:..CT32AC0GE3A.., seqC 2:..CTTGATGAA.., seqC 3:1..... ] A BE C
. @ #® Nl
fﬁ Neural Gas ﬁ% Lakbel n
Spectrum ulllus, Feature Space o
- . ConTeTrsion with | EReference pP———mo—m
Conversion n neurons Spectra

Calculate n
Centre
Clusters C

Minimum Number of Center,
maximizing Overall Accuracy 10% 1

9% +
8% 4
. 7% +

n, = argmin max{OA(n]} 6% |
T 5% =

4%
3% +

Error Training

2% A

Percentage of error training

1% +
er,. =ei(ng)=1— maai{OA(ns)} o
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

\\ \ Number of reference spectra (centre clusters)




Testing Phase

— A

—— B

0
I

[segh 1:..
[segB 1:..

[seqgC 1:..

Spectrum

Converslion

How many HFW?
Jaccard distance between HFWs in

il
ullluy
Ll

Feature Space
Conversion

ACTGATTTA.., seqh 2:..CTTGITTAG.., segh 3:
AACGTTCCGE. ., seqgB 2:..ATCGEATCAG.., segB 3:

CTzAACEAA. ., seqC 2:..C0TTEATEAA.., seqglC 3:

Meural Gas
with

test sequence and centroids set.

Il neurons

Pre-labelled
sequences

Calculate n
Centre
Clusters C

Lakhel n
Feference
Spectra

Validation Error

e,(w) = ming J;

(S*SEQ1C*i)

HFW=w
Test sequence Trained Trained Trained
--RCGTCCTTTAR. . Eingdom Fhylum Species
1 Reference l Feference 1 Feference
Spectrum Test Kingdom Test Phylum Test Species
. - -
Conversion WKir_gdn\m WP]:-.ylum Speciec




Validation

Error

Validation

Error

2212 Barcode Sequences (with cross-validation
techniques)

0.14 A

012 1

0.10 4

0.08 -
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0.04 4

0.02 4

{a2) Phylum Classification:

10-fold cross-validation

25 words, accuracy: 98.2%
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{c) Genus Classification:
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leave-l-out cross—-validation
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30 words, accuracy: 97.8%
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(b) Familia Classificaticon: leawve-l-cut cross-validation

30 words, accuracy: 99.8%
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High Frequency Words

{d) Species Classification: leawve-l-out cross-validation

35 words, accuracy: 97.2%
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High Fregquency Words



Visualization: Barplot and Neighbourhood Graph

The visualization of the cluster structure is important in
order to investigate the relationships between clusters.

The data is divided into artificial subsets where the
relationship between clusters plays an important role.

The Neighborhood Graph can be used to display distances
between clusters for centroid-based cluster solutions.

16

14

Barplots (max and means) of 2 centroids

10 12

8

6

4
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An implementation of
the previous pipeline for the
Classification of
DNA Barcode Sequences
In R environment




Introduction to R environment

R is a free software programming language and
software environment for statistical computing and
data analysis.

R is an interpreted language; users typically access
it through a command-line interpreter.

R supports procedural programming with functions
and, for some functions, object-oriented
programming with generic functions.

R's data structures include scalars, vectors,
satrices, data frames and lists.




R Software

File Edit Packages MWindows Help

i R Console

E wersion 2.8.1 [(20058-12-22)
Copyright (C) 2008 The R Foundation for Z3tatistical Computing
ISEN 3-200051-07-0 .

i Untitled - R Editor
R is free software and comes with ABSOLUTELY MO WARRANTY. ### This i= the script file for simulating the LLN, CLT, and
¥You are welcome to redistribute it under certain conditions. ### independence of the Sawmple mean and sawple variance.
Type 'licensel)' or 'licence(]' for distribution details.
b bees o bk bk bbb bt ey b bk e b by bbb e bbb g kb e b bk e b b bk g kg3

Natural language support but running in an English locale # cummesan function: calculates the cwmilative mean of & vactor.

F i= a collabhorative project with many contributors. = function(x){
Type 'contributorsi()' for more information and lengthix)
'citation()' on how to cite E or R packages in publications. nuweric (n)
cilin)

Type 'demo()' for sowe dewos, 'help()' for oh-line help, or cumsum i x)
'help.start()' for an HTHML browser interface to help. vz

Type 'qgf)' to gquit R. returniy)

[Previously saved workspace restored]
LLM

> |

1o0oo

runori(n)

histi(z, wain= 'Standard Normwal Randomw Deviates')

zeqil, n, 1)




R Packages

* There are many contributed =
packages that can be used to
agricolas

extend R.
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akima
Alghesign
allelic
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* These libraries are created and s
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maintained by the authors. el

anacar
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AnalyzeFMRI
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Animal

animation
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R Packages for Bioinformatics

» Bioconductor (www.bioconductor.org)

- contains several packages with many R functions for
the analysis and comprehension of genomic data
generated by wet lab experiments in molecular
biology.

» Seqinr (pbil.univ-
lyon1.fr/software/seqinr/home.php?lang=eng)

- contains R functions for obtaining sequences from
DNA and protein sequence databases, and for
analysing DNA and protein sequences.




R Packages for KCCA

» FlexClust (http://cran.r-
project.org/web/packages/flexclust/)

- implements a general framework for k-centroids
cluster analysis supporting arbitrary distance
measures and centroid computation.

> Cluster methods: k-means, hard competitive
learning and neural gas clustering.

- There are numerous visualization methods for
cluster results (neighborhood graphs, barcharts of
centroids, etc.)




RStudio IDE

A free and open source integrated development
e T T i S .Y

File Edit Code View Plots Session Project Build Tools Help

Ql~ 2~ = [ & Project: (None) ~
ectrar* (] TrainingMethod_bp.r * @ | TrainingMethod.r » | TrainingBBST_species.r * | TEST_allSeqVSallReduced_TAX Pl > =[] 1 Workspace = History =]
; [[1SourceonSave | & / ~ [=®Run | 9% | #Source v L | ‘ % [ | _Import Dataset~ | 3 .:_I,J
1] - Data B
2  Tibrary(flexclust) il s 2 z =
3 DNAfregMatrix 613x1024 integer matrix 1558 |=
4 # Neural Gas parameters( parl= _max, par2= _min, par3= _max, pard= _min) £ dataTAX 469x13 character matrix {11
5 params = list(iter=250, ng.rate= c(0.55,0.05,25,0.1) ) 5 t 2
6 input 613x1024 1integer matrix o
7 # NUMBER of CLUSTERS input_shuffle 613x1024 integer matrix =3
8 num_clust<-5 =
9 peaks 25x5 character matrix =]
10 vector_max_frag  25x1 double matrix 3 (4
11 # Load matrix with spectral representation from variable or CSV
12 input <- get(load ("DNAfregMatrix")) Files Plots Packages Help P |
13 #input <- as.matrix(read.table(file = "DNAfregMatrix_csv.csv”, head = TRUE, row.names=1, sep = ",")) =
14 Ga ) P Zoom | HExportr @ | ¥ ClearAll C
15
16 ### START LEARNING P HASE #22
17 #Set a random value with a seed
18 set.seed(3487)
19
20 # Shuffle input file
21  input_dim<-dim(input) 1] e & - T
22 dinout shuffle <- input’samole.int(inout dim).] |lI:
11 (Top Level) + R Script < |
L 0 -
Console C:/Users/Fiannaca/Desktop/Tutorial Napoli/code/ ~ =] <
> BEEREEE VESUVAETZ AT IODN METHODS EEEREEEEEE EJ
> I
> #Barchar of all clusters 2
> barchart(cl)
N -
> #Barplot of cluster center #1
> barplot(cl@centers[1,]) . A
> #Barchar of all clusters, one for each page o -

L

barplot(cl, oneplot=FALSE)

> # Plot neighborhood graph projected over kmers 64 and 1023
> plot(cl, which=c(64,1023))

> # Plot neighborhood graph projected over 3 dimensions: 1,500,1000 |__.4
> pairs(cl, which=c(1,500,1000)) I:]

N o sl cilcilal o BE ™ N ) T




Examples

1. Create a spectral representation of DNA
Barcode sequences.

2. Train a neural gas for DNA sequences
classification.

3. Select the best number of K centroids in
training process.

4. Test classifier with cross-validation.




5 Datasets (613 Sequences) from

BOLD

AHNFE WG1.8 Marine Bio-Surveillance 133
BBST  Bee Barcoding Initiative 164
FUCUB Marine Life (MarBOL) 111
LHSMI Human Pathogens and Zoonoses 103
PMF All Birds Barcoding Initiative 102

Spe(3)
Spe(10)
Spe(3)
Spe(11)

Fam(6); Gen(7);
Spe(8)



